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Abstract

A simple oceanic model with thermodynamics is used to determine
the surface thermal forcing field by the variational adjoint technique. Two
data-sets are chosen, the climatological monthly-mean sea surface
temperature (SST) and winds. We have been able for the first time to
calculate the seasonal surface heat flux patterns which are consistent with
the ocean's dynamics and thermodynamics and which agree with the
observations.

The use of a priori information is investigated in the formulation of
the cost function to obtain meaningful model parameters. Experimental
evidence has verified that adding a priori information of the estimated
parameters can increase the probability for the solution to be unique. The a
priori information also plays the role of bogus data. It serves not only to
increase the number of observations but to improve the conditioning of the
Hessian matrix. Hence the practical benefit of adding the a priori
information is to accelerate the convergence of the descent algorithm.

We learned from many test runs that surface heat flux pattern can
not be fully derived without the optimal adjustment of the model initial SST
state. The importance of a correct initial SST condition in our study is to

ensure a periodic seasonal cycle and therefore reduces the level of the data

misfit.



The result illustrates that the model, albeit simple, is capable of
assimilating the sea surface temperature (SST) observations in deriving the
surface heat flux. The comparison with the existing heat flux atlases of
Oberhuber (1988) and Fu et al. (1990) has shown that our adjoint procedure
has successfully captured the main seasonal signals of the surface heat flux
distribution over the tropical Pacific ocean, though some differences exist.

The result from this research is very promising. The methodology
used here can be easily extended to simultaneously derive the surface wind
forcing and the surface heat flux. Thus, it can provide the information

useful for the studies of climate prediction and air-sea interaction.

xiii



1. Introduction

1.1 Motivation

The process of combining data with model dynamics, known as
data assimilation, has proven to be a powerful tool for extracting the
maximum amount of information from the observations. Data
assimilation is now used extensively in meteorology (see Thepaut and
Courtier, 1991; Navon et al., 1992) and, recently, in oceanography. As
reviewed by Ghil and Malanotte-Rizzoli (1991) and Anderson (1991), the
fundamental difference between data assimilation in oceanography and
in meteorology is the motivation. Oceanographic assimilation is not
driven by the need to forecast as is the case for meteorological
assimilation. It is motivated by the need to improve our understanding of
ocean dynamics/thermodynamics and by the need to use the much-
expanded yet still insufficient available datasets in an optimal fashion.
Therefore, the emphases of oceanographic assimilation are on model
parameter estimation, formal testihg of the model against the data, and
exploration and intercomparison of assimilation techniques.

Three elements comprise a data assimilation approach. These are
an oceanic model, assimilation technique and observations. The oceanic
model describes the physical mechanisms of ocean behavior. The
assimilation technique provides the means for extracting and filtering the

information from data. These two processes combined give the computed
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atmospheric/oceanographic fields which are consistent with both model
physics and observations.

The development and implementation of the data assimilation
techniques in meteorology have dramatically improved the ability of
theoretical models to diagnose and predict the atmospheric behavior.
However, oceanic models are less realistic and sophisticated than their
meteorological counterparts with respect to the parameterizations of
internal physics and forcing functions. This is largely due to the
inadequacy of observations in providing effective tests for verifying model
formulations.

Even with new technology, oceanic datasets are still insufficient to
provide complete, uniform and accurate information in space and time. A
major challenge confronting oceanographers is to develop data
assimilation techniques to obtain a better estimate of the ocean fields
while improving the less well-known aspects of the model, especially the
surface forcing fields. The process which derives the model parameters
from the available observations is known as parameter estimation.

The ocean is forced thermally through direct insolation, through
evaporation and precipitation, through sensible heat transfer from the
overlying atmosphere, and through the surface wind stress. Because of
limited direct measurements, the variability of the surface forcing (the
surface heat fluxes in particular) has been a vexed question in the study of
climate changes and air-sea interactions. For a long time, researchers
have been using the aerodynamic bulk formulae to study climatological

surface heat fluxes over the tropical oceans. It is commonly accepted that
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such heat flux parameterization contains a large degree of uncertainty in
the values of the empirical constants and some less known physical
parameters such as the cloud covers and near-surface humidity (Blanc,
1987; Blumenthal et al., 1989; Harrison, 1991; Seager et al., 1988). It is not
surprising to see that existing atlases (e.g. Esbensen and Kushnir, 1981;
Weare et al.,. 1981; Oberhuber, 1988; Fu et al., 1990) have shown
substantial differences in the overall patterns and magnitudes of the
climatological heat fluxes over the tropical Pacific ocean. The climate
prediction of upper ocean properties with these prescribed heat fluxes
have been unsuccessful.

Hence deriving the heat flux fields by assimilation techniques will
not only lead to better understanding of heat flux variability but aid in
climate prediction studies. The motivation of this research is to estimate
the annual distribution of net downward surface heat flux distribution
over the tropical Pacific ocean using the data assimilation technique

called the adjoint method. This research is an application of parameter

estimation.

1.2 OceanicData Assimilation Techniques

There have been two general approaches for oceanic data
assimilation, that is, the continuous data assimilation and the variational
method. Continuous data assimilation inserts observations directly into
the model while the model is being integrated forward over some time

interval. The variational method finds a solution of model inputs by
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minimizing some measure of the distance (or lack of fit) between

observations and model counterparts.

(a) Continuous Data Assimilation

Continuous data assimilation has been largely technology
motivated. That is, it was developed for assimilating the asynoptic data
from satellite-borne systems such as sea surface height from altimetry.
The technique that has been applied to continuous data assimilation with
real data is dynamic relaxation (or nudging, Newtonian relaxation).
Dynamical relaxation has been studied theoretically by meteorologists
Anthes (1975), Hoke and Anthes (1976) and Davies and Turner (1977). It
was introduced into oceanography by Verron and Holland (1988) and by
Holland and Malanotte-Rizzoli (1989). This technique has been used
widely in assimilating the altimetry data and found to be very successful
both in quasi-geostrophic experiments (Holland and Malanotte-
Rizz0li,1989; Haines, 1991) and primitive equation tests (Malanotte-Rizzoli
et al., 1989; 1990). Recently a technique allowing optimal nudging based on
variational adjoint parameter estimation was developed by Zou, Navon

and Le Dimet (1992).

(b) Variational Approach

The Kalman-Bucy filter, the inverse model and the adjoint equation
method are the commonly used techniques of variational approach. The
formulation of the KB filter (Jazwinski, 1970; Ghil et al., 1981; Dee et al.,
1985; and Parrish and Cohn, 1985) is an elegant and comprehensive
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mathematical description of the data assimilation problem. This method
is based upon the ideas of sequential estimation theory which explicitly
includes the prediction of the background error statistics. Therefore, the
KB filter is capable of providing the error estimates such as the error bars
or the error covariance matrix of the obtained solution. However, this
technique suffers from two serious drawbacks. The first and foremost is
the computational expense of updating the error covariance matrices. The
computational requirements rapidly increase with model complexity and
are seldom affordable. The second is the difficulty in identifying the
systematic model errors from the observational errors. Because of these
limitations, most applications of this technique in oceanography have
been done for relatively simple dynamical models (Miller, 1986; Bennett
and Budgell, 1987 and 1989; Gaspar and Wunsch, 1989; Miller and Cane,
1989; Miller and Ghil, 1990).

The inverse model and the adjoint equation method are all derived
from optimal control theory of partial differential equations. The inverse
model is often formulated as a set of linear equations relating data and
unknown parameters. The equations are written in matrix form and
solved by methods such as singular value decomposition or linear
programming. This technique needs to store a matrix with the size of
(number of unknowns Xx number of equations) in performing the
computation. As a result, it has been limited to low spatial resolution or to
simple local dynamics (Wunsch, 1978; Olbers and Wenzel, 1988; Schréter
and Wunsch, 1986; Wunsch, 1987, 1988 and 1989; Tziperman and Hecht,
1988; and Tziperman and Malanotte-Rizzoli, 1991).
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The studies by Lewis and Derber (1985), Le Dimet and Talagrand
(1986), Talagrand and Courtier (1987), Courtier and Talagrand (1987),
Derber (1987), Thacker (1987), and Thacker and Long (1988) have made
significant contributions to the adjoixit approach and developed it as one of
the important strategies in variational data assimilation. More recently
the method has been applied to 3-D operational models by Thepaut and
Courtier (1991) and Navon et al. (1992). The adjoint method has been used
successfully in both meteorology and oceanography. For a review of its
applications in meteorology, one may refer to Lorenc (1986), Navon (1986),

Le Dimet and Navon (1988) and Ghil and Malanotte-Rizzoli (1990).

1.3 Application of Adjoint Method in Oceanography

The adjoint method incorporates the physics of the problem in the
definition of the cost function (representing the misfits between model and
observations) and constrains the dynamics. A Lagrange multiplier term
is used to enforce the dynamical constraints. It is the solution of the
adjoint equation of the linearized model equations called the tangent
linear model. The first and most significant advantage of this technique is
the introduction of the adjoint equation which allows the gradient of the
cost functional with respect to the control variable vector to be efficiently
and accurately evaluated. As a result, the computation of the minimum of
the cost function is greatly simplified. This technique has proven to be
very versatile. It can assimilate all types of data as long as data can be

represented in terms of model variables or functions. It can also be used to
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adjust any imodel parameters (initial condition, boundary condition,
forcing, mixing coefficients, etc.) once there is sufficient data available.
Thacker and Long (1988) have made the first attempt to apply the
adjoint method in oceanographic data assimilation by fitting the model
dynamics to observations. The research work to date can be grouped into
four categories, namely, initialization, parameter estimation, steady state

circulation investigation, and Gulf Stream study.

(a) Application to the tropical oceans - Initialization

The motivation for initialization in oceanography is primarily
driven by the crucial need of climate studies. As oceanic observations
increase dramatically in quality and quantity in the near future, and
oceanic and atmospheric models become more sophisticated, using the
coupled ocean-atmosphere system for climate forecasting is an ever
important subject. Initialization is a process that can provide diagnostic
constraints used to generate approximate but model-consistent data that
are not available from the observation network. The resulting balanced
initial conditions will damp out the spurious high-frequency oscillations
in the integration of the forecast model. This process is of vital importance
for the success of the forecasting of weather as well as climate. The
oceanic model must first be able to be initialized in order to find the
balanced initial state of the coupled models for the climate forecast. The
feasibility studies by many researchers, e.g. Thacker and Long (1988),
Thacker (1988), Derber and Rosati (1989), Bennett (1990), Long and
Thacker (19892, 1989b), and Sheinbaum and Anderson (1990a, 1990b), have
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shown the potential of oceanic model initialization using the adjoint
technique. Similar work was done in meteorology by Courtier and

Talagrand (1990), Zou et al. (1992a) and Zou et al. (1992b).

(b) Application to parameter estimation - Understanding ocean physics

The application of the adjoint method by O'Brien's group at FSU
addresses the issue of parameter estimation. Although oceanic models
have become quite sophisticated in recent years, they still cannot
accurately represent the state of the ocean. This is largely due to many
uncertainties of the model inputs, such as eddy-mixing coefficients,
surface wind forcing, surface heat and fresh water fluxes, etc. Normally
there is no direct information on many of these input parameters in
oceanic measurements. The purpose of parameter estimation is to deduce
the unknown model inputs from the existing data (wind, temperature,
salinity, currents, or whatever available datasets) with the aid of the
numerical model and, at the same time, to obtain an optimal estimate of
the observed field. This process can provide information useful for
improving the model itself. Besides the work done by O'Brien's group,
e.g., Panchang and O'Brien (1989), Smedstad and O'Brien (1990), and Yu
and O'Brien (1991), we have also seen other studies of the parameter
estimation, e.g., Schréter (1989), Das et al. (1991), Das and Lardner (1992),
and Lardner (1992).

(c) Application to the North Atlantic Ocean - Establishing a steady state

oceanic circulation
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Ocean dynamics are characterized by a wide range of temporal
scales. The high frequencies, associated with the gravity waves, set the
upper limit for the size of the time step for most numerical models; the
low frequencies, associated with the slow process in the establishment of
the oceanic equilibrium circulation, determine the number of time steps
needed to spin up the model. The need of using the optimization method to
compute the steady state arises because of the high computational
expense of the conventional method in doing so. Efforts are being taken by
the groups at AOML (Atmospheric and Oceanic Marine Laboratory,
Miami) and MIT to determine whether a state of the North Atlantic ocean
can be estimated which is consistent both with the observations and with
the North Atlantic models (either a simple barotropic vorticity-equation
model or a fully three-dimensional baroclinic, primitive-equation model)
in a dynamical steady state (Tziperman and Thacker, 1989; Tziperman et

al., 1992; Marotzke, 1992; Bergamasco et al., 1992).

(d) Application to the Gulf Stream - Characteristics study

The Harvard Oceanography Group has applied the adjoint
technique to the Harvard quasi-geostrophic open-ocean model (Robinson
and Walstad, 1987) to study the characteristics of the Gulf Stream. For
example, Moore (1991) studied the ability of the adjoint method in
correcting large errors in the speed and position of the Gulf Stream jet by
assimilating GEOSAT sea surface height observations. The adjoint
approach has also been used to investigate the fastest growing unstable

modes of a Gulf Stream-like jet (Farrell and Moore, 1992).
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Each category is not isolated. Thacker and Long (1988) and
Tziperman and Thacker (1989) present examples where the sea surface
forcing and coefficients of friction are also treated as unknowns and are
determined by the adjoint procedure besides computing the optimal model
state. Yu and O'Brien (1992) pointed out that the combination of
initialization and parameter estimation can result in a better model-data
fitting. One thing we should remember is that a problem is well-posed
only when the initial conditions, the boundary conditions, and the model

parameters can all be resolved.

1.4 Objectives

In this study an attempt is made to explore the potential of
determining the surface heat flux distribution by the adjoint method. We
choose the datasets of the climatological sea surface temperature (SST)
(Shea et al., 1990) and the climatological wind (Stricherz et al., 1992)
because of their fairly good temporal and spatial coverage in the domain of
interest. The seasonal variation of the surface heat flux over the tropical
Pacific ocean is investigated by assimilating the observations into a
relatively simple reduced-gravity model with thermodynamics (Cane,
1979).

The objective throughout this research is not to provide a pattern to
be rigorously adjusted for the use of climate and air-sea interaction

studies. Rather we devote this research as an application of the adjoint
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method in parameter estimation, with the aim of formulating a suitable
procedure for determining time-dependent field parameters. The
application of the adjoint technique in oceanography is in its primitive
stage and so is oceanic modeling in the tropics. The extensive use of the
adjoint technique is not only to perfect the technique itself but to improve
the model. Our research serves this purpose.

The study is organized as follows. In section 2, we present the
optimal control theory, its application in parameter estimation, and the
adjoint method in solving the parameter estimation problem. The
commonly used minimization algorithms, i.e., the steepest descent,
quasi-Newton and conjugate gradient methods, are also compared in this
section. In section 3, the oceanic model is described and the adjoint
equation is derived. The variational adjoint procedure is then formulated.
The important issues in data assimilation, such as the variable scaling
and cost function formulation, are discussed comprehensively in this
section. Section 4 presents the dynamics/thermodynamics of the seasonal
variability in the tropical Pacific ocean, in which the variations of SST,
wind, currents and upwelling are discussed. The seasonal surface heat
flux distribution obtained using the adjoint method are given in section 5.
Our results are compared with the existing atlases. The differences are
examined both through the air-sea interaction viewpoint and the
thermodynamic viewpoint. A summary and conclusions are included in
section 6. The derivation of the continuous adjoint equation is given in
Appendix A. The optimal heat flux pattern is compared with the residual

calculation in Appendix B.



2. Parameter Estimation: Theory and Application

In this section, we introduce the theoretical foundation of
parameter estimation, namely, optimal control theory of partial
differential equations. We then demonstrate how this theory can be

employed to solve parameter estimation problems in meteorology and

oceanography.

2.1 Optimal Control Theory

The theory of optimal control addresses the dependence of the
output parameters in a model described by a set of coupled partial
differential equations on any or all of the input parameters, or more
specifically, how the outputs can be controlled by the inputs.

A general class of parameter estimation problems involves finding
the values of a control parameter vector (input) z that minimize a cost
function (output) J(x,u) which is a scalar function of u and state vector x(u).
The state vector x of the system to be controlled is given by the solution of
equations E(x,u) = 0.

For a given parameter estimation problem, the choice of which
parameters to be designated as the control vector is not unique. However,

the choice must be such that 1 determines x through the model of the

system E(x,u) = 0.

12
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The objectives of the optimal control theory are to obtain necessary
and sufficient conditions for J(x,u) to be a unique minimum, and to study
the structure and properties of the equations which express these
conditions (where the model E(x,u) = 0 naturally intervenes). The ultimate
goal is to construct algorithms amenable to numerical computations for
the approximation of a control u which minimizes J(x,u) (such a control is
termed an "optimal control").

Optimal control theory has been generalized for systems governed
by partial differential equations (Lions, 1971; Bryson and Ho, 1975). This
suggests a method to solve the data assimilation problem in meteorology
and oceanography. The application of optimal control theory with the
variational method for data assimilation has developed the adjoint

technique for solving a large variety of problems.

2.2 Optimal Control Applied to Parameter Estimation
2.2.1 Mathematical Formulation of Parameter Estimation

Parameter estimation is one aspect of data assimilation. It
assimilates the observations into an atmospheric or oceanic model in
order to obtain an estimate for a designated model control parameter and
at the same time to give an optimal state of the atmosphere or the ocean.
This process is able to provide an exact consistency between the analysis
and dynamics using various kinds of available datasets.

When applying optimal control theory to parameter estimation, the

cost function, that measures the lack-of-fit between the observation and
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the model counterpart, is the output. Inputs can be any or all of the
parameters, for example, initial conditions, boundary conditions and any
physical or numerical parameters that enter the model formulation. The
input parameters are called the ‘control variables. Once they are
determined, they define a model trajectory in space and time. The purpose
of parameter estimation is not only to know the sensitivity of the cost
function to the control variables (sensitivity test), but to know how to adjust
each of the control variables in order to make the cost function as small as
possible (in a weighted least-squares sense).

There are two basic rules required for parameter estimation. The
fields produced by an assimilation must obey some constraints. These are
provided by the dynamical model and/or statistical relationships known to
be satisfied by the real atmospheric or oceanographic fields. In additien,
the fields produced by the assimilation must be as close as possible to the
observations within the accuracy of the observations themselves, at the
required spatial and temporal scales. These two requirements define the
optimal control procedure in solving the parameter estimation. In its
most condensed way, the procedure.searches for a solution for the control
parameter which makes the corresponding state of the atmosphere/ocean
closest to the given observational field in a given norm.

Therefore, the mathematical formulation for finding the optimal
solution can be described as follows:

minimize the cost function J(x,u)

subject to the equality constraint E(x,u)=0 2.1
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2.2.2 Weak, Strong Constraint Formalisms and the Augmented

Lagrangian

Sasaki (1970) in his historical paper has introduced two
formalisms, namely the weak and strong constraint methods, to enforce
the constraint (2.1) in order to numerically solve the problem. The weak
constraint formalism is related to the penalty method (e.g. Daley, 1991; Le
Dimet and Navon, 1988), in which the constraints are imposed with a

prespecified weight p:

J(xu) = J(xu) + || E(xu) |2 (2.2)
where ||[E(x,u)|| is a suitable norm of E(x,u). In this approach, the cost
function is minimized while penalizing the constraint violations. If one
wants to satisfy the constraint very precisely, one should specify | to be
very large. Otherwise, the constraint is only approximately satisfied if p is
chosen to be small. In other words, the value of i controls how accurate
the model E is as a representator of the observed state of atmosphere/
ocean.

Taking the first variation of (2.2) to be zero with respect to the

variables u and x yields the Euler-Lagrange equation:

oJ,
% G*u®)=0 (2.32)
aJ,
3 G u*)=0 (2.3b)

where u* and x* are the optimal values of x and x.
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The strong constraint formalism requires the optimal solution to
satisfy the constraint E(x,u) = 0 exactly. A Lagrange function L(x,u,A) is

defined to impose this condition. This is written as

L(Axu)=J(xu)+ { A, E(x,u)} 2.4)
where {, } is an inner product of two vectors and A is a vector of as yet
unknown Lagrange multipliers with the same number of components as
E has equations. The Euler-Lagrange optimality conditions, which

require the first variation of L(A,x,u) with respect to A, x, and u to vanish,

are given by

g.i. (A*, x*, 1) = 0 (2.5a)
% (A*, x*,u*)=0 (2.5b)
g—ﬁ‘ (A*, x*,u*)=0 (2.5¢)

The optimal estimates x*, u*, and A* are obtained by solving (2.5a) through
(2.5¢).
A combination of weak and strong constraint formalisms is the

augmented Lagrangian (Navon and De Villiers, 1983). It has the form:

L,y(x,u) = J(xu) + 1 || E(xu) |2+ {A, E(x,u) } (2.6)
In Sasaki's terminology, E(x,u) is considered both as a weak constraint
and as a strong one. A major advantage of this method is its ability to
prevent the numerical instability associated with the ill-conditioning of
the weak constraint problem (2.2) (Bertsekas, 1982; Fletcher, 1987; Bryson

and Ho, 1975). Numerical instability is induced when a variable is
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approaching the optimum. In this case, the procedure involves the
product of a large value of the penalty parameter pu by a small vector E(x,u)
and is subject to considerable round-off errors. This is expressed
mathematically by the condition number of the Hessian matrix
approaching infinity (the role of the condition number of the Hessian
matrix is discussed in section 3.2).

Another advantage of the augmented Lagrangian (2.6) is that it
tends to converge faster than the strong constraint formalism (2.4) (Gill et
al., 1981; Navon and De Villiers, 1983; Fletcher, 1987). It has been
mathematically proved (Gill, 1981) that the weak constraint (penalty term)
has the convexification property and can thus improve the global
convergence properties of the strong constraint formalism. This is
illustrated in section 3.3 when formulating a cost function for our

parameter estimation problem.

2.3 Adjoint Method

The constrained minimization problem (2.1) can in principle be
solved through its Euler-Lagrange equations either (2.3) or (2.5). But
except in particular cases, no standard method exists for directly solving
the system (2.3) and (2.5). For most cases, an iterative procedure has to be
implemented in order to compute the optimal solution of the system
numerically.

The number of control variables in meteorological/oceanographic

applications is usually very large, typically upwards of 107. Efficient
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variational téchniques are needed in order to practically and economically
perforzh the iterative procedure. There do exist efficient minimization
routines, e.g., conjugate gradient , quasi-Newton and truncated-Newtow
methods, all of which require at least gradient information. Therefore the
optimal control procedure needs to establish the connection between the
.variations of the control variables and the corresponding variations of the
cost function.

Among the various tools of optimal control, the adjoint equations
proves to be an elegant and efficient method for computing the local
gradient of a complicated function numerically for time-dependent
problems. The nomenclature adjoint arises because one uses an operator
that bears a precise relationship to the adjoint operator in a dynamical
constraint. This operator arises in a natural fashion when the gradient cof
the functional is found.

Adjoint equations are, in essence, a tool to solve the variational data
assimilation problem. The derivation of the adjoint equations can be
achieved by three methods: the classical variational method, namely the
derivation of the Euler-Lagrange equations (Morse and Feshbach, 1953);
the control theory approach (Le Dimet and Talagrand, 1986; Lions, 1971);
and the Lagrange multiplier approach (Thacker and Long, 1988; Lanczos,
1968). The approach through control theory, though mathematically
elegant, has difficulties in dealing with complicated boundary conditions.
The Lagrange multiplier method gives a simple and direct way to derive
the equations of the adjoint formulation without recourse to the

mathematics of adjoint operators. However it is inefficient to verify the
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accuracy of the adjoint model using the Lagrange multiplier method
when one uses a 3-D model. The illustration of the strong constraint
formalism of (2.4) is an example of how the Lagrange multiplier approach
works. '

Let's go back to relation (2.4). Under simple regularity conditions
(differentiability to a sufficient order) it can be shown (Bertsekas, 1982)
that the problem of determining the minimum of J(x,u) subject to the
constraint E(x,u) = 0 is equivalent to the problem of determining the
stationary point of L(A,x,u). This leads to requiring the first derivatives of
L(A,x,u) with respect to the variables A, x and u to vanish, which results in
a set of the Euler-Lagrange equations of (2.5).

Condition (2.5a) recovers the model itself: E(x,u) = 0. If the state of
the atmosphere/ocean, namely x, evolves according to the model
dynamics, (2.5a) is satisfied by definition. Condition (2.5b) yields the so-
called adjoint equation. It is the equation governing the evolution of the
Lagrange multiplier. The practical procedure to derive the adjoint
equations uses partial integration of the assimilation model E. This is
demonstrated in the appendix A to derive the adjoint equation for our heat
flux parameter estimation problem. In general, the adjoint equations are
always linear in A, and do not depend on the nonlinearity of the
dynamical constraints. However, for nonlinear time-dependent or
forward models the adjoint model depends on the state of the forward
model (such as the velocity and/or temperature fields) as a function of
time. In this case the time history of the forward model has to be stored in

memory in order to be used for the integration of the adjoint model.
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Condition (2.5¢) provides the gradient information for the cost function J.
Consider a simple calculation to demonstrate why this is true.

The contribution of the second term in (2.4) to the value of the
Lagrange function is zero because condition (2.1) holds. So the value of
L(x,u) is always equal to the value of the cost function J(x,u), i.e.,

J(x,u) = L(x,u) for E(xu)=0
Then the gradient of the cost function with respect to the control variable u

can be calculated as

al
VJ:E
_L
du
oL dL dx
“ou *ox du @D

Condition (2.5b) gives dL/dx = 0 and therefore the second term vanishes.
Inserting (2.4) into condition (2.7) yields:

oE
V,‘J=g—£ +{A, 57 (2.8)

This is the gradient information of the cost function J with respect to the
control variable u. It implies that it is easy to compute V,J once the
trajectory of A of the adjoint model has been determined. The gradient
information (2.8) is actually a sensitivity estimator. Any of the model
parameters can be designated as the control variable. Even though we
may not like to change some of the control variables during the
optimization process, (2.8) can provide useful information on whether
these likely candidates need to be improved (if ||V,J|| is large). This

analysis has been used in uncertainty analysis. For example, Hall and
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Cacuci (1983) and Hall (1986) applied it to assess the sensitivity of the
model forecasts to changes in the model parameters and boundary
conditions.

To sum up, the variational approach for solving problem (2.1) by the
strong constraint formalism (2.4) involves the computation of the time
evolution of the model state x by (2.5a) and the adjoint model by (2.5b). With
the information of the Lagrange multiplier A, one can calculate the
gradient of the cost function with respect to the control variables u
(equation (2.5¢)). This gradient is then used to provide a "descent
direction" in the space of the control variables. The process is iterated
until a convergence criterion has been satisfied at which the cost function
has achieved its local minimum. The issue of the uniqueness of the local
minimum is not addressed here.

Our approach assumes that the model is perfect. To take into
account forecast model error one can use continuous variational
assimilation (Derber 1989).

Many different algorithms are available for performing the
minimization process (Gill et al., 1981; Tarantola, 1987; and Luenberger,
1984). However, only three types of minimization algorithms, namely
conjugate-gradient, quasi-Newton and truncated-Newton (Zou et al., 1992)
methods, are practical for meteorological and oceanographic applications
due to the large number of control variables. In the next section, we
discuss the efficiency associated with these algorithm methods (we

consider only the case in which the cost function J is at least a twice-

continuously differentiable function).
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2.4 Minimization Algorithms
The essence of an iterative method is in how to decide whether a

updated point is better than the previous point. In the case of variational
data assimilation, the natural measure of this progress is provided by the
value of the cost function J. It is reasonable to require a decrease in J at
every iteration, and to impose the descent condition that Jy,; < Jy for all k2
0, where k is the iteration number. A method that imposes this
requirement is termed a descent method. The algorithms implementing
the descent method can be described as follows.

Let uy be the current estimate of u*.

Step 1. [Test for convergence.] If the conditions for convergence are
satisfied, the algorithm terminates with u, as the solution.

Step 2. [Compute a search direction.] Compute a non-zero n-vector
Px, the direction of search.

Step 3. [Compute a step-size.] Compute a positive scalar oy, the step-
size, for which it holds that J(uy + oupi) < J(uy).

Step 4. [Update the estimate of the minimum.] Set uy,; < w + upy,

k « k+1, and go back to Step 1.

2.4.1 Steepest Descent Method
If the search direction is always taken as the negative of g (where

g =VyJ), ie., px=- gk the algorithm becomes the steepest-descent method.
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The steepest-descent method is the oldest and most widely known descent
method. It is also one of the simplest methods for which a satisfactory
analysis exists. The steepest descent process is illustrated in Figure 1 in
which the cost function has two variables u; and u,. From Step 4, the
update of the control variable can be written as
Upyy = U -~ O 8k
The descent condition requires that J(u..;) < J(x,), which as shown in
Figure 1 is that u,,; should be closer to the minimum than u,. If we
descend along the direction -g,, eventually we reach a point at which J(u) is
a minimum along that line (denoted J(u,.;) in Figure 1). At that point, -g;
is parallel to the contours of constant J. Therefore,
{81, 8} =0 2.9)

where {, } is the inner product in the n-dimensional space. Condition (2.9)
is used to find the optimum step-size o,; a procedure called a line search.

Unfortunately, a proof of global convergence for the steepest descent
algorithm does not ensure that it is an efficient method. This can be seen
by considering the rate of convergence of the steepest-descent method
through examining the behavior of the method on a quadratic function.
The reason we choose to analyze a quadratic function is that the special
properties of a quadratic give a simplified analysis; furthermore, some
general properties of a method can usually be deduced from its

performance on a quadratic, since every smooth function behaves like a

quadratic in a sufficiently small region.

) 1 ) )
Consider J(x) = 5 xTGx + c™x, where c is a constant vector and G is a

symmetric positive-definite matrix. If the steepest-descent method is
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Y

Figure 1. Nlustration of the method of steepest descent and of obtaining

the optimum stepsize for a two dimensional problem.
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applied to J, using an exact line search to determine the step length, its
rate of convergence is linear. Suppose that An.x and An;, are the largest

and smallest eigenvalues of G, then it can be shown that (Luenberger,
1984)

(A-ma.x - A—min)z

Ormer + A 0 7))

J(xxs1) - J(x*) =

_1)2
L - T (2.10)
(x+ 1)°

where x* is the model true solution and k¥ denotes cond(G), the spectral
condition number of G. The striking feature of this result is that the
asymptotic error constant, which gives the factor of reduction in the error
at each step, can be arbitrarily close to unity. For example, if x is given to
be 50 (so that G is mildly ill-conditioned), the error constant is (49/51)% =
0.92. As a result there is only a very small gain in accuracy at each
iteration. In practice, the steepest-descent method usually needs
hundreds of iterations to make very little progress towards the solution.
This conclusion holds for the rate of convergence of the steepest-descent
method on a general function.

It is often true, unfortunately, that a method with a linear rate of
convergence is slow in convergence (Gill et al., 1981). Other methods,
such as the Newton-type with second-derivatives, have a quadratic
convergence to the local minimum if the Hessian matrix (the second
derivative matrix of the cost function) is positive definite. We therefore

expect a fast convergence rate with a Newton method.
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2.4.2 Quasi-Newton and Conjugate-gradient Methods

The key for the fast convergence of the Newton method is that the
Hessian matrix provides the curvature information which allows a local
quadratic model of J to be developed (Gill et al., 1981). But the large
computation requirements associated with the Newton method make it
impossible for use in data assimilation. Hence quasi-Newton and
conjugate-gradient methods have been developed (Hestenes, 1980; Gill et
al., 1981; Fletcher, 1982; Luenberger, 1984).

The theory of the quasi-Newton method is based on the fact that an
approximation to the curvature information can be computed without
explicitly forming the Hessian matrix and therefore, only the first
derivatives are required. The quasi-Newton method has, however, only a
superlinear rate of convergence (Gill et al.,, 1981). Each Hessian
approximation produces a specified curvature along the particular search
direction. At a given iteration, the matrix of the Hessian approximation is
a low-rank modification of the matrix from the previous iteration
(Luenberger, 1984). The quasi-Newton method still requires the same
storage size as the Hessian matrix and therefore is an option which is not
feasible for large-scale problems because of memory limitations.

In contrast to the quasi-Newton method, the conjugate-gradient
method generates search directions without storing a matrix (Hestenes,
1980). Each search direction py is computed by using the current and

previous gradients gy and gy.; and the previous conjugate direction py_;,

i.e.,
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Px == &k + Px Pra

T,
8x (g - 8k.1) . . .
_—— . h h jir J = r--:k’
where By gy - 2x.0) The search directions {phji=0 are mutually

conjugate, in the sense that for i = 0,....k and j = 0,...,k
PiTGPj = 0, i ¢j
where G is a positive definite symmetric matrix. The conjugate-gradient

method with an exact linear search is n-step superlinearly convergent

(Luenberger, 1984), i.e.,

. - ¥
im “un3+n u ”=0

oo || unj - 0™ ||

However, in practice rounding errors may destroy the superlinear
convergence property, so that the conjugate-gradient method is nearly
always linearly convergent (Gill et al., 1981). Although this type of
algorithm is far from ideal, regarding to its restarting strategy and
convergent property (Beale, 1972; Liu and Nocedal, 1988), it is currently
the only reasonable method available for data assimilation in meteorology
and oceanography, where the number of the control variables is extremely
large.

Navon and Legler (1987) have tested several conjugate-gradient
algorithms for large-scale minimization problems in meteorology. They
concluded that for most applications the Shanno-Phua (1980) limited-
memory quasi-Newton conjugate-gradient algorithm is the most efficient
algorithm from the viewpoints of both computational complexity and
storage requirements. Limited-memory quasi-Newton conjugate-gradient

methods can be viewed as extensions of the conjugate-gradient method, in
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which additional storage is used to accelerate convergence. They also can
be viewed as implementations of quasi-Newton methods, in which storage
is restricted. These methods are based upon the idea of computing the
direction of search py as -Mgy, where M is a positive-definite matrix
obtained by updating the identity matrix with a limited number of quasi-
Newton corrections (Nazareth, 1979). Although the direction of search is
equivalent to the product of a matrix and a vector, the matrix is never
stored explicitly; rather, only the vectors that define the updates are
retained (Shanno, 1978). Different methods can be developed by varying
the number of updating vectors stored and choosing different quasi-
Newton updating formula. Shanno and Phua's CONMIN algorithm
(Shanno and Phua, 1980) was implemented with the "two-step” limited-
memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) quasi-Newton update
(e.g. Gill et al., 1981; Luenberger, 1984). A detailed description of the
CONMIN algorithm was given in Legler et al. (1989) and Legler and
Navon (1991).

The conjugate-gradient type algorithms provide fast functional
reduction within the first few iterations when dealing with a well-
conditioned problem, in which case the eigenvalues of the Hessian are
clustered into groups of approximately equal value (Gill et al., 1981). In
particular, for linear dynamics the convergence will occur in m (m < n)
iterations, where m is the number of distinct eigenvalues of the Hessian
and n is the number of control variables. In fact the rate of the
convergence depends to a large extent on several factors. If in an

application the algorithm converges too slowly, it can either be due to the
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adverse effects of rounding errors which cause the computed directions to
lose conjugacy; or due to the ill-conditioned Hessian which has a very
broad eigenvalue structure; or due to noisy data which can not reflect the
model dynamics well (Gill et al., 1981; Thacker, 1988).

In summary, one requires adequate preconditioning (or scaling)
techniques to speed up convergence. For experience with various

algorithms, see a recent paper by Navon et al. (1992).



3. Estimating the Heat Flux Distribution over the
Tropical Pacific Ocean by the Adjoint Technique

As discussed in the previous section, when the variational adjoint
method is applied to parameter estimation, a solution is sought by best
fitting the model state to the observations within the observational space-
time domain. In this section, we apply this technique to determine the
heat flux distribution over the tropical Pacific ocean by assimilating the
SST observations. A variational adjoint procedure has four parts: an
oceanic model (including the representation of dynamics and
thermodynamics in the physical model), an adjoint model whose solution
yields Lagrange multiplier vector fields, a formula for calculating the
gradient of the cost function with respect to the control parameters, and
an efficient large-scale unconstrained minimization algorithm which

iteratively performs the procedure to locate the local minimum, which is

assumed to be unique.

3.1 Oceanic Model
3.1.1 Choice of Models in the Tropical Oceans

Different numerical models are available to study the ocean
dynamics/thermodynamics in the tropical regions. On the one hand, we

have simple models such as the reduced-gravity models (Busalacchi and

30
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O'Brien, 1980; Schopf and Cane, 1983; Zebiak and Cane, 1987; Seager et al.
1988), which have demonstrated the relevance of the linear dynamics to
the observed seasonal and interannual variability of the tropical Pacific.
While on the other hand, we might select a general circulation model
(GCM) (Philander and Siegler, 1985; Philander and Hurlin, 1988;
Harrison et al. 1989). Although a GCM is the most complex model
existing, it always presents difficulties in the interpretation of its behavior
due to the number and complexity of the processes involved.

Surface heat flux itself is a complicated process in which radiative,
latent and sensible heat fluxes all contribute to the changes of the
resulting flux pattern. No one has systematically studied the variability of
the heat flux by assimilating observed data into an oceanic model. As an
initial work in doing this, we hope that the estimated heat flux pattern
can be explained both from the air-sea interaction viewpoint and from the
thermodynamical viewpoint inherent in the model. Therefore, a reduced-
gravity model with thermodynamics is chosen which is capable of
representing the main mechanisms of the dynamics/thermodynamics
processes. A suitable model is Zebiak and Cane's reduced-gravity model
with a constant-depth surface-layer (Zebiak and Cane, 1987).

The model consists of two layers above the thermocline with the
same constant density. The ocean below the thermocline, with a higher
density, is assumed to be sufficiently deep so that its velocity vanishes. The
upper of the two active layers is a fixed-depth surface layer. These two
layers are coupled through entrainment/detrainment at their interface

and through frictional horizontal shearing. The adoption of the linear,
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frictional, surface layer is based on the following considerations (Cane,
1979; Zebiak, 1985). The model should not be expected to give a good
estimate for the near-surface current field if the entire upper layer is
taken to be homogeneous. We expect that, in reality, a turbulent well-
mixed layer exists near the surface and accordingly, nearly all of the
frictionally induced vertical transport in the upper ocean should occur in
this region alone. Additionally, the air-sea interaction process sufficiently
changes the ocean thermodynamics near the surface. In attempting to
simulate changes in sea surface temperature it is important to include
the physics of the near-surface region. By this reasoning it follows that the
wind stress is applied only to this surface layer; in this sense, this layer

plays the role of the ocean mixed layer.

3.1.2 Description of the Physical Model
As discussed above, the oceanic model describes the linear

dynamics of a homogeneous upper layer, overlying a motionless deep

layer, on an equatorial B-plane. A constant-depth, frictional, linear
surface layer is added to this layer (Figure 2). Thermodynamics are
included only in this surface layer. We assume that there is no density
difference across the base of the surface layer, i.e., the surface layer is
treated as a part of the upper layer. Following Seager et al. (1988), the

equations for the depth-averaged currents are :

du ch G
Tl - Byvl = —-g’g + o H +AV2U.1 \ (3.1a)
0
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Figure 2. The vertical structure of the reduced-gravity model with
thermodynamics. The model has two layers above the thermocline with
the same constant density. The upper of the two active layers is a constant
depth surface layer which is acted upon directly by the wind stress.



34

ov oh

v
'gl + Byu, =—g'g + ;_I:I_ +AVZy, (3.1b)
0
ou; ov
S +H(S2 +5H)=0 (3.1¢)

where (u;,v,) are the horizontal velocity components of the depth-averaged

currents; h is the total layer thickness; H is the mean depth of the layer;
po is the density of water; and A is the horizontal viscosity coefficient. The

wind stress is calculated by the aerodynamic bulk formula:
(T, ™) =pcp U (U, V)
where p,is the density of air; ¢ is the wind stress drag coefficient; U is

the wind speed vector; and (U, V) are the components of the wind velocity.
The equations governing the shear between the surface layer and

the lower upper-layer are represented by the Ekman dynamics:

TX
rou, — Byv, = (8.2a)
pOHm
B L (3.2b
rsvs+ yus = 3.2 )
pOHm

where (u,, v,) are the frictional vélocity components; r, is the friction
coefficient; and H_, is the depth of the surface layer over which the stress
is applied and is taken to be a constant by assumption.
The solution of equations (3.1a-c) is the sum of the Ekman transport
(ug, vg) and the pressure-gradient-driven current (up, vp), ie.,
(uy, vy) = (ug, vg) + (u,, v,) (3.3a)
The total surface-layer velocity (u, v) consists of the shear flow (u,, v,) and

the pressure-gradient-driven current (u,, v,), i.e.
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T, V) = (g, Vi) + (up, V) (3.3b)
The total Ekman transport calculated from (8.1) and (3.2) should be the

same. This gives the relation

(ug, vg) = (U5, V)1 (3-3¢)
The surface-layer current (u, v) can then be derived from relations (3.3a-

¢), which is

(u, v) = (u,, v,) + (uy, vy) - (ug, v,) fm 3.4)

From this, the entrainment velocity can be calculated from the divergence

of the surface-layer current field,
w,=H, (52 + %) (3.5)
The thermodynamics describe the evolution of temperature in the
surface layer. The evolution of SST is governed by horizontal advection,
vertical entrainment, surface heating and horizontal diffusion (Seager et
al. 1988) and is given by:

_— _— —_— Vz i
at"l"Uax'l'Vay— OcpH + ' Hq +AT T (36)

where T is the sea surface temperature; ¢, is the specific heat; Ay is the

horizontal diffusion coefficient. The net surface heat flux Q, which is a
function of time and space, involves a field of parameters to be determined
by the variational adjoint process. The second term on the right hand side
is the bulk representation of the turbulent heat flux which occurs when

the surface layer entrains fluid from the layer below. The quantity, Ty, is

the subsurface water temperature. Entrainment brings the cooler
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subsurface water to the surface and cools the surface mixed layer.
Detrainment, however, warms up the subsurface water but does not

change the temperature in the surface directly. So the Heaviside step

function M(w,) is introduced, which is defined to be zero for w, less than
zero and equal to w, for w, greater than or equal to zero.

As is common in a reduced-gravity model, the surface layer
pressure gradient is assumed to vary with the thermocline depth alone.
This excludes the effect of the temperature change on the surface
pressure gradient. It cannot be justified rigorously since the assumption
that the influence of the SST changes on the pressure gradient is usually
negligible may not hold universally. Fortunately by assuming this, the
model physics are greatly simplified since dynamics and
thermodynamics become decoupled.

Equations (3.1), (3.2) and (3.6) describe the evolution of the current
fields and the upper-layer thickness. These dynamic fields will not be
affected by any change of the SST at all, although they have a significant
influence on the SST evolution through the advection process. In other
word, the changes of the SST do not have a feedback into the dynamical
field. Since we are going to assimilate the SST observations only, the
optimal distribution of the surface heat flux will not affect the dynamical
model. This further simplifies the parameter estimation problem since
the constraints of the system reduce to the SST equation only and the SST
evolution equation can be viewed as a linear equation with non-constant
coefficients. The surface current structure (3.4) can be determined by the

equations (3.1) and (3.2). These currents along with the thermocline depth
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are available for one year after the model has been fully spun up. They are

used to compute the advective components in the temperature evolution

equation.

3.2 Importance of the Scaling in Variational Procedure

Before we proceed further, we would like to present an important
issue in variational procedure: scaling. We discuss the role of scaling in
determining the condition number of the Hessian and therefore in
determining the convergent rate of the minimization algorithms. Many
opinions on the inefficiency of the variational adjoint method for data
assimilation exist. These can be attributed to no or poor scaling of the
model problem (Luenberger, 1981; Gill et al. 1981; Navon and De Villiers,
1983; Thacker, 1989; and Zou et al. 1992).

3.2.1 The Role of the Hessian

The conjugate-gradient method implemented as a memoryless
quasi-Newton method is a modified Newton method (approximating
Newton's method without evaluating the inverse of the Hessian).
According to the general theory of modified Newton methods, it is the
condition number of the Hessian that influences the convergence
properties of these algorithms (Gill et al., 1981). The condition number of a
matrix, which is the ratio of its largest to its smallest eigenvalues,

represents the singularity of the matrix. If the condition number is large,
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the matrix is ill conditioned (almost singular); and if it is close to unity,
the matrix is well conditioned. As discussed by Thacker (1989), an ill-
conditioned Hessian indicates that some model variables are poorly
determined by the data. This can occur because of inappropriately scaled
variables in the model. This can be corrected and is discussed in this
section. In addition, the ill-condition may be due to inadequate
observations. This second possibility was studied by Thacker (1988) in
which bogus data are introduced to bias the fit toward some preferred
solution. It is also examined in our study.

Experimental evidence has verified that at least an initial well-
scaled functional can lead to a significant improvement in the
performance of the memoryless quasi-Newton conjugate-gradient
algorithms (Gill et al, 1981; Yu and O'Brien, 1992). The memoryless BFGS
(Broyden-Fletcher-Goldfarb-Shanno) update procedure does, in general,
give a more favorable condition number if the cost function is well scaled
and thus the eigenvalues of the Hessian are near unity. Therefore, the
condition number of the Hessian matrix has a substantial influence on
the convergence of the descent algorithm.

Let's consider the shape of the cost function and ask how it relates
to the condition number of the Hessian. The shape of the cost surface is
determined by the eigenvalues and eigenvectors of the Hessian: the
eigenvectors are in the directions of the principal axes of the ellipse of
constant cost and the eigenvalues determine the lengths of the radii along
these axes. For a well-conditioned problem (eigenvalues equal to unity),

all radii of the constant-cost contour are equal, in which case the
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algorithm converges in one iteration and all model variables are equally
well determined. As the condition number increases, the contours become
more enlongated.

Suppose the condition number is large so that the cost contours are
highly elliptical. The relative change in the cost function due to a
perturbation of variables will vary radically depending on the direction of
the perturbation. The directions that produce the largest and smallest
changes in the cost function value are the eigenvectors associated with the
largest and smallest eigenvalues. When the Hessian is ill-conditioned, the
cost function may change very slowly along an eigenvector (or direction)
associated with a near-zero eigenvalue. In this case, the cost function is
very flat in this particular direction. The algorithm becomes inefficient
since the changes in the cost function that "should" be significant may be
lost amongst the rounding error. An ill-conditioned Hessian of the
solution is thus a form of bad scaling, in the sense that similar changes in
the variable do not lead to similar changes in the cost function.

The conditioning of the Hessian matrix can be improved by the
technique of scaling. All the methods of scaling can be divided into three
groups: scaling the variable, scaling the cost function, scaling the
constraints (Gill et al., 1981). Here we use the technique of variable
scaling. For an in-depth analysis of the adjoint of the Hessian model (

second order adjoint) and its impact on scaling, see Wang et al. (1992).
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3.2.2 Variable scaling

Variable scaling transforms the variables from units that typically
reflect the physical nature of the problem to units that display certain
desirable properties for the minimization process (Gill et al., 1981; Navon
and De Villiers, 1983). The basic rule of variable scaling is to make all the
variables in the scaled problem to be of order unity, so that each variable
has a similar weight during the optimization. If typical values of all the
variables are known, a problem can be transformed so that the variables
are all the same order of magnitude.

Normally, only linear transformations of the variables should be

used for scaling. The most commonly used transformation has the form

z=Dy

where {zj} are the original variables, {yj} are the transformed variables,

and D is a constant diagonal matrix. By doing this, the derivatives of the

cost function are also scaled. If g, and H, represent the gradient vector and

Hessian matrix of the transformed problem respectively, the relationships

of the derivatives of the original to the transformed problem are given by

8,=Dg; H,=DHD
It is obvious that there is a substantial effect on the Hessian when variable
scaling is applied. This will in turn significantly change the condition
number of the Hessian and hence improve the convergence rate of

optimization algorithms.
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3.2.3 Choosing the Scales of the Physical Variables

All physical variables in the SST evolution equation should be
scaled because the SST equation is the physical constraint in the
minimization process. By scaling the variables, the constraints are scaled
implicitly.

The data-sets used in this research are the climatological SST and
climatological winds. We therefore concentrate on studying the seasonal
variability of the surface heat flux in the tropical Pacific ocean. It follows
that the suitable time scale for the SST evolution should be

[t]=12 months 3.7
The seasonal variations of the SST over the tropical Pacific are mainly due
to the advection and surface thermal forcing, which both occur in a wide
spatial domain. The spatial scales for the temperature are then chosen as

[ x ] = longitude extension of model domain

(Pacific zonal basin scale) (3.8)

[ y 1 =latitude extension of model domain 3.9

As for the SST scale, we choose

where Ty=29°C, representing the climatological SST value in the
equatorial warm pool region.

The maximum strength of climatological zonal surface current
computed from our dynamical model is less than 70 cm/sec. We scale the

zonal current component by

[u] =60 cm/sec 3.11)
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in order to have them all be the same order of magnitude. The

corresponding scale for the meridional surface current is

[vl=lulx+- (3.12

which can be deduced from the continuity equation (3.5). Equation (3.5)
also gives the upper bound of the upwelling, which is

[w ] =[HIx 12 G
where [ H ] represents the value of H .
Using the scales of (3.7) - (3.13), the SST equation (3.6) can be non-
dimensionalized as (all primes have been dropped for convenience)

T 2
%—"E—+6A(ug—x+v%)=8QQ+8AM(We)(Td-T)+8W%{2%‘-+8vygyg

(3.14)

where the d's are the scaling parameters whose values are given by

[ullt]
A=""Tx]
___[Q1rt]
?7 Py, Hy [ To)

Ap[t]
8vx= [X]2

Aplt]
Oy =Ty F

3.3 Formulating the Cost Function Using the a priori Information
In variational analysis, the solution of a problem is sought by

minimizing the cost function, which measures the distance between the
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observations and the corresponding model outputs. The model equations
serve as the constraints. Considering the linear dynamics of our model,
we choose a least-squares fitting for the cost function corresponding to a

L, Euclidean norm. The cost function is then defined as the misfit of the

model and the observed SST, which can be written as

=} f T- T K, (- D) do (315)

where the superscript T denotes transpose; the carrot (") denotes observed
data. The integral is summed over the observational space-time domain
Z. K, is a weighting matrix and theoretically should be taken to be the
inverse of the observation error covariance matrix. By assuming that the
errors in the data are uncorrelated and equally weighted, K is reduced to
a unit matrix multiplied by a constant K,. The data used in this study are
the climatological SST which provide a total of twelve monthly-mean SST
patterns.

A unique minimum of (3.15) exists when two conditions are
satisfied. First, it is required that the problem be well-determined (Menke,
1984). Theoretically this can occur if the number of unknowns is exactly
equal to the number of observations. However this is not always true in the
applications of data assimilation in meteorology/oceanography. Even if
there is exactly the information to determine the model parameters, a
noisy model-data fit can result when there are insufficient independent
estimates to reduce the uncertainties introduced by observational errors
(Thacker, 1988). The second condition is that the cost function (8.15)

should be convex within the domain of definition of the parameters
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(Carrera and Neuman, 1986a and 1986b). This requirement is satisfied

only if the Hessian matrix is positive definite. The Hessian of the cost
function (3.15) is

—g-g%= f KT[(%) (5)+ -1 g;r] (3.16)

p> _
The first term on the right-hand side is positive semi-definite and the
second term could be negative. Therefore, one can not guarantee the
positive definiteness of the Hessian in (3.16) and so it is possible to find
more than one solution of the minimization problem (8.15). In this case,
although the data provide information about the unknown parameters,
they do not provide enough to determine them uniquely. See a study of the
second order adjoint methed by Wang et al. {1292).

A strategy is proposed here to circumvent the difficulties associated
with (3.15), that is, adding a priori information (Menke, 1984; Thacker,
1988). The a priori knowledge is not the information based on the
observations but some conditions one expect to have in general. It plays
the role of bogus data, which are used to supplement the insufficient real
data that are available. Its usefulness is in the great reduction of the

range of possible solutions - or even causing the solution to be unique

(Carrera and Neuman, 1986b).

Defining a new term J, for our problem, which is

=1E, i Q- (@Q-Qdo (3.17)
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where the tilde (*) denotes the guess filed and K, is the computational
weight. Adding (3.17) to (3.15), we then have a new cost function, J', which
is

J=Jr+Jg (3.18)
From the mathematical point of view, the term J, functions as the penalty
term in which é corresponds to shifts of the origin and K, controls the
size of the penalty (Fletcher, 1987).

A priori information can take many forms and in each case it
quantifies expectations about the character of the solution that are not
based on the actual data (Menke, 1984). We define the parameter EQ in
(8.17) taken to be the value of the parameter Q at previous iteration. By
doing so, the term J, measures the closeness of the estimated parameters
within two consecutive iterations of the minimization process. It then
penalizes the departures from the previous estimate when searching the
optimal solution, which is the a priori prejudice towards the smoothness.
With this a priori information, the Hessian of (3.18) becomes

o2r p
Q2 T aQ2?

+ K] (3.19)

where I is a unit matrix. Clearly, the second term on the right-hand side
is positive definite. Although one can not guarantee the positive
definiteness of (3.18), the inclusion of the a priori information increases
the probability that this will be the case and therefore enhances the
convexity of the cost function J' in (3.18). Carrera and Neuman (1986b)
have studied several examples which clearly show the a priori

information on the formation of the unique solution. This problem is also
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addressed by Bennett and Miller (1991) in which an explicit contribution
from the initial condition was included in the formation of the cost

function in order to ensure a unique, low-noise forecast.

Actually, the term J, not only provides the a priori information for
the estimated parameter but accelerates the convergence of the
minimization algorithm (Bertsekas, 1982; Fletcher, 1987; Thacker, 1988).
An ill-conditioned Hessian, which may be due to inadequate observations,
has a severe impact on the algorithm efficiency (Thacker, 1988). The a

priori information serves as bogus data and hence increases the number

of observations. Thus adding the term J, can improve the conditioning of

the Hessian with the practical benefit of speeding up the convergence of

the minimization algorithm.
The minimization problem will not be altered if (3.18) is scaled by

K. It follows that the cost function has the form

1 - - ' - -
J(T,Q) = ) J (T-TY'(T-Tdo+ % KQ _[ Q-Q'Q-Qdo (3.20)
T T
where J = A and = & The latter represents the relative weight. A
T K K= K" P ght.

similar cost functional was used by Zou et al. (1992) to estimate optimal

nudging parameters.

3.4 Adjoint Model and the Variational Procedure
The natural way to enforce the SST equation (3.14), which serves as

a strong constraint, is by introducing a set of Lagrange multipliers A,.

The inclusion of the a priori information, as the penalty in the cost
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function (3.20), allows the variational approach to incorporate both strong
and weak constraints into a common least squares framework. As
mentioned in section 2.2, this leads to the formation of the augmented

Lagrange function (Navon and De Villiers, 1983), which is
-~ - 1. -~ -
LT, Q, M)=% J’(T-T)T(T-T)dc-i-éKQ JI(Q- QT(Q-Q) do
z z

2
ﬁvr{at-*-SA(ua +vay)+8AM(w)(T Ty -8, Q- avxgz'g s gy’g}dc

(3.21)
The constrained optimization problem is now replaced by a series of
unconstrained problems with respect to T, Q, and A,. But not all the
parameters are independent. The variations of the control variable Q will
be determined by the optimization process and the subsequent variations
of the dependent variable T will be given by the SST equation. As discussed
in section 2.2, the condition of the stationary point of the Lagrange
function L(T, Q, A;) requires that the first variation of L(T, Q, A;) with

respect to all the variables vanishes. We have shown that the condition

oL(T, Q, Ap) B
dAr

recovers the original SST equation. Combining the scaled continuity

equation with equation (3.14), one can write the SST equation as

aT 5 {B(Tu) a(Tv)} 5 T 92T [ 8,Tyw, forw,20 _s
ot 794 ox toy [ Owoax2” "-Vay2 8,Tw, forw,<0) Q@

(3.22)
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The condition that

(T, Q Ay

or -0

results in the adjoint equation, which is given by

a;:HSA {amw a(vz,r)} 0%y 2\,

3% 3y +5vxax2 +5way2
SaArW, for w, > O} -
- {O forw,<0) ~ T-T (3:23)

The derivation of the adjoint equation and the associated boundary
conditions can be found in appendix A. Comparing equations (3.22) with
(3.23), one can find that the adjoint equation has a similar form to the SST
equation except for two prominent features. The driving factor in the
adjoint equation is the square rcot of the data misfit, in contrast tc the
surface heat flux in the SST equation. In addition, the diffusion term in
the adjoint equation has an opposite sign to that in the SST equation. This
requires that the integration of the adjoint equation should be backward in
time in order to satisfy the stability condition of a well-posed problem.
Therefore the Lagrange multiplier provides the information about how
different the observations and the model counterparts are. This
information is transmitted back to the initial time of the assimilation cycle
to influence the reconstruction of the model state.

The condition that

LT, QM)
o=

gives the equation which is:
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Ko(Q- @ - 2,=0 (3.24)
As is proved in (2.7) - (2.8), the left hand side of (3.24) is actually the
greadient of the cost function J with respect to the control variables Q,

which is:

Vod =K@ - Q - 8y (3.25)

Equations (3.22) and (3.23) can be performed iteratively with a
descent algorithm which uses the gradient information (3.25) to search an
optimal control field Q. The value of Q is chosen in a way that it equals to
the most recently computed Q.

With the equations (3.22) and (3.23) and the gradient information
(3.25), an iterative procedure can then be formed as follows: (i) Start with a
first-guess for the control variable Q. (i1) Integrate the SST equation (3.22)
forward in time and store the values of the field variables at each time
step. (iii) Compute the data misfits. (iv) Integrate the adjoint equation
(3.23) backward in time to solve for the Lagrange multiplier vector fields.
(v) Use (3.25) to compute the gradient of the cost function and then
perform the CONMIN large-scale gnconstrained minimization routine to
adjust the value of the control variable Q. (vi) Repeat steps (ii) (with the
new estimate of the control Q), (i1) and (iv) until some convergence criteria
are satisfied.

Note that in the integration of both the SST equation and the adjoint
equation, one needs to know the dynamical fields such as the currents
and thermocline depth. So the trajectory of the dynamical model (3.1), (3.2)

and (3.5) must be computed in advance in order to perform the
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minimization process. In the next section, we discuss the numerical

techniques used in the model integration.

3.5 Numerical Models

In section 3.1, we have shown that the decoupling between
dynamics and thermodynamics greatly simplifies the problem of
estimating of the surface heat flux distribution over the tropical Pacific
ocean. It allows the dynamical model integration and the variational
procedure to be handled separately. The physical processes involved in the
dynamical and thermodynamical models are so different that the

associated temporal and spatial scales are different.

3.5.1 Dynamical Model

The dynamical model is governed by the wave dynamics. For the
chosen model domain which extends from 25°S to 25°N in latitude and
from 120°E to 70°W in longitude, all possible equatorially trapped waves,
e.g., Kelvin, Rossby, Yanai and gravity waves, can be excited by the
applied wind forcing (Moore and Philander, 1978). The temporal and
spatial resolutions of the numerical model must be chosen appropriately
in order to resolve all the possible waves and also to make the model
integration numerically stable.

We choose the spatial interval for the dynamical model to be: Ax =
Ay = 0.5 degree and the time step to be: At = 15 minutes. The model (3.1),
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(8.2) and (3.5) are driven by the FSU climatological monthly-mean winds
(Stricherz et al, 1992), which are projected into each time step by a linear
interpolation and into 0.5°x0.5° spatial grids by cubic-spline interpolation.
The values of the numerical parameters used in the model integration are
listed in Table 1. It takes about 12 years for the model to reach a periodic
constant seasonal cycle. The main seasonal variability of the dynamical
fields in the tropical Pacific ocean has been successfully captured when
the periodic state is established. The currents and the upper layer
thickness of the 16th year are saved every two days to be used in the

minimization process.

3.5.2Data
The data used in this study are the climatological SST and winds.

The Shea-Trenberth-Reynolds (STR) monthly SST climatology (Shea et al.,
1990) was derived from a 30-year CAC (Climate Analysis Center) SST
climatology. It provides a fairly smoothed coverage over the global ocean.
The spatial resolution is 2° latitude by 2° longitude.

The wind monthly climatology is from the Atlas of Florida State
University Tropical Pacific Winds for TOGA 1966-1985 (Stricherz et al.,
1992). This atlas was constructed from all the available ship observations
over 20 years (includes merchant ships, buoys, and other marine
observing stations). It gives the monthly-mean pseudo-stress (defined as
the wind components multiplied by the wind magnitude) with 2° x 2°
spatial resolution in the tropical Pacific region, 30°S to 30°N and 120°E to

70°W.
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Table 1. The values of the model parameter used in the model integration

Parameter Value Remarks

H 150 m mean depth of upper-layer

H, 50 m depth of the constant
surface layer

g' 3.7x102 reduced gravity

cp 1.5x10% wind stress drag coefficient

Pa 1.2 kgm™ density of air

Po 1025 kg m™ density of seawater

R 6.3784x10° m radius of earth

Q 0.729x10™* sec’? angular rotation rate of
earth

cp 3.994x10° J (kg °C)? specific heat

A 750 m? sec™? coefficient of horizontal
viscosity

Aq 2000 m? sec! coefficient of horizontal
thermal diffusion

T, 0.5 (day)™ dissipation coefficient
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3.5.3 Variational Procedure

Advection and surface heating are the dominant components
responsible for the thermodynamical variability in the oceanic upper
layer. They can effectively occur over the whole basin. The large spatial
scale associated with the advection and the thermal forcing permits us to
choose a relatively low resolution while still be able to resolve the main
features of the SST seasonal variability. Based on this reasoning, the
spatial intervals for the SST and the adjoint model are chosen to be: Ax =
Ay = 2 degrees. Correspondingly, one can choose a longer time-step which
is: At = 6 hours. In the variational adjoint procedure, we need to perform
one forward SST model integration and one backward adjoint integration
in order to compute the gradient of the cost function. Several such
iterations are required to obtain the minimum value of the cost function.
By choosing a coarse resolution, the computation time is greatly reduced.

The estimated parameters Q are a function of time and space since
the physical emphasis is to study the seasonal variability of heat flux. In
order to perform the minimization process, the evolution of the model
computed currents and thermocline depth are stored in advance because
they enter the SST and adjoint integration through the advection terms.
We also need to save the time history of the SST and the Lagrange
multiplier in addition to the storage required by the CONMIN routine.
The CONMIN algorithm requires the storage of at least seven vectors of
length M, where M is the number of the control variables in the

discretized model (Navon and Legler, 1987).
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The climatological monthly-mean SST data (Shea et al, 1990) are
linearly interpolated into each time level. This linearly interpolated
dataset is used to compute the value of the cost functional and to calculate
the data misfits for the backward integrating of the adjoint model.

3.5.4 The Boundary Conditions

The model northern and southern boundaries are open. The open
boundary condition described by Camerlengo and O'Brien (1980) is
imposed to compute model variables along these boundaries. The effect of
the coast at the eastern and western sides of the basin is simulated in the
model. The no-normal flow and no-slip conditions are applied at these
solid boundaries. The model is discretized on an Arakawa C-grid. The
time integration uses a leapfrog scheme, with a forward scheme every
99th time step to eliminate the computational mode. A Dufort-Frankel
scheme is applied for the diffusive term (O'Brien, 1986).



4. Seasonal Variability in the Tropical Pacific

The oceanic upper layer interacts with the lower atmosphere
through the complicated processes of momentum and heat interchange.
Understanding the physics of the upper ocean as well as the atmosphere
system will help us to interpret the heat interchange pattern determined
from the variational adjoint procedure. In this section, we study the
variability of the surface winds, currents, upwelling, and SST on the
seasonal time scales. The patterns of the surface pseudo-stress field
(Figures 3a-d) and the SST (Figures 6a-d) are from the climatology by
Stricherz et al. (1992) and Shea et al. (1990), respectively. The figures of
currents (Figures 4a-d) and upwelling (Figures 5a-d) are the results from
the model equations (3.1), (3.2) and (3.5) for the model year 16. The model
takes about 12 years to achieve a periodic steady state.

4.1 Dynamics

The variability of the tropical ocean circulation is closely related to
the surface wind field. In the tropics, the characteristic response times
for baroclinic oceanic processes are much faster than they are at mid-
latitude and are much closer to the time scales characterizing the wind
variations (Moore and Philander, 1978). Therefore, an accurate

knowledge of the temporal and spatial structure of the atmospheric

55
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forcing is essential to understand the oceanic features.

(a) The Wind Field

The surface wind field over the tropical Pacific ocean is dominated
by the trade wind system. The Intertropical Convergence Zone (ITCZ),
which is the narrow zone of light variable winds (which is located at 8°N
in December (see Figure 3a)), separates the stronger and steadier
Northeast and Southeast Trades (Figures 3a-d). The seasonal variation of
the surface wind field is characterized by the seasonal migration of the
ITCZ. The ITCZ tends to be oriented NNE to SSW and follows the sun
toward the summer hemisphere. In boreal fall it reaches its most
northerly position at about 10°N and the Southeast Trades are most
intensified (Figure 3d). The equator remains in the easterly Southeast
Trades until boreal winter and early spring, when the ITCZ crosses the
equator and the winds there are weak (Figure 3a). The Northeast Trades
are strongest in this time. In late spring the ITCZ again moves
northward and the equatorial easterly intensifies abruptly with the

strengthening of the Southeast Trades (Figure 3c).

(b) Surface Currents

The prominent features of the ocean surface circulation in the
tropical Pacific are the alternating bands of eastward and westward
flowing currents. The eastward flows, in the direction counter to the
easterly trade winds, are referred to as the North Equatorial Counter-

Currents (NECC). The westward flows are referred to as the North
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Equatorial Currents (NEC) and the South Equatorial Currents (SEC). The
dynamics of these equatorial currents have been studied by many
researchers and reviewed by Leetmaa et al. (1981) and are not discussed
here. The three major surface currents are evident in our model (Figures
4a-d). The NEC is located between 8°N and 20°N, the SEC is from about
17°S to 3°N, and the narrower NECC flows to the east between them.

Both the intensity and location of the surface currents vary
seasonally with the variations of the trade winds. The surface currents
are weak when the equatorial winds relax in boreal winter and spring
(Figures 4a-b). In boreal fall the intensification of the southeast trades
strengthens the westward SEC, as is evident in Figure 4d. The NECC is
also intensified at this time of the year. In general, the NEC is strong
during the northern winter and weak during the summer, while the SEC
and the NECC are strong in the late summer and weak in the spring. The
NECC assumes its northernmost position in boreal summer, whereas it
lies closest to the equator in the boreal winter (Figures 4a-d). The modeled

surface current system is in agreement with the observations of Meehl

(1982).

(¢) Upwelling

The computed upwelling fields, which are proportional to the
divergence of the surface layer currents, are given in figures 5a-d.
Upwelling mainly occurs in the Southern Hemisphere area of the east
Pacific and in a narrow band near the equator. Equatorial upwelling is

the result of divergence of the wind-driven currents. The westward
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Figure 4. The pattern of the surface current in (a) December; (b) March; (c)
June; and (d) September. The prominent features of the circulation are the
alternating bands of eastward and westward flowing currents, namely, the
westward NEC and SEC and the eastward NECC. The strength of the
surface currents vary seasonally in response to the variation of ITCZ.
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Figure 5. The pattern of the upwelling in (a) December; (b) March; (c) June;
and (d) September (the contour interval is 0.25 m/day). The upwelling

maximum occurs in the northern summer.



63

] 13 )
160W 140% 120%

UPWELLING VELCCITY (M/DAY)
1

7
100W

T T T T
180 160w 140¥% 120%

Figure 5. continued



64

component of the southeast trades causes poleward Ekman transport of
surface water on either side of equator. In the central and eastern Pacific,
upwelling is strongest in boreal summer and fall due to the increased
divergence of the surface water in response to the seasonal increase in the
strength of the southeast trade wind. Coastal upwelling is generally
greatest a few degrees south of the equator, and is most pronounced in
boreal summer. In the western Pacific, upwelling is weaker and more
variable in location. In boreal summer and fall, upwelling is found to the
south of the equator and downwelling to the north. In boreal winter and
spring the situation is just the opposite, with upwelling to the north of the

equator and downwelling to the south.

4.2 Thermodynamics

The SST seasonal variability in the tropical Pacific ocean has been
well documented from many historical data analyses (e.g., Hickey, 1975;
Hastenrath and Lamb, 1977; Esbensen and Kushnir, 1981; Horel, 1982;
Levitus, 1987; Shea et al., 1990; Fiedler, 1992). There are three prominent
SST centers in the tropical Paciﬁé: the warm SST center in the west-
central Pacific (termed the "warm pool"”); the cold SST center in the south-
east Pacific (known as the "cold tongue"); and a warm SST center in the
eastern Pacific to the north of the equator (Figures 6a-d). The strong
contrast between the warm pool in the west and the cold tongue in the east
produce a remarkable SST horizontal gradient in the equatorial region.

The SST isotherms are zonally oriented outside of the equatorial region (8°
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Figure 6. The pattern of the observed sea surface temperature (SST) in (a)
December; (b) March; (c) June; and (d) September. The most striking feature
of the seasonal cycle is the strengthening of the horizontal SST gradient in
the equatorial Pacific during the northern summer time.
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poleward).

The changes of the warm pool and the cold tongue in their location
and intensity determine the main features of the SST distribution in the
Pacific in different seasons. In boreal winter (Figure 6a), the warm pool is
located near the equator and west of 160°W. The other warm center is in
the eastern Pacific near the coast of central America. The cold tongue is
weak with a relatively high SST (>17°C). There is less westward extension
of the cold water. As Spring comes (Figure 6b), the warm pool is
intensified and expands eastward. At the same time, the warm water in
the east of the basin expands south-westward. Hence a large area of water
warmer than 27°C appears in the equatorial region. The cold tongue is in
its weakest. As a result the horizontal SST gradient decreases.

In boreal summer (Figure 6c¢), there is a warm strip which
connects the warm pool in the west with the warm water in the east off
the coast of Mexico. The cold tongue begins to develop and intrudes north-
westward. The axis of this temperature minimum is between 1°S - 3°S
and becomes symmetric about the equator at its westernmost limit. The
southern ocean is cooler than in spring. By September (Figure 6d), the
warm strip (SST>27°C) in the central and eastern Pacific has migrated
northward and is centered near 10°N in the vicinity of the ITCZ. To the
south, the SST gradually decreases into the Southern Hemisphere where
it is in the southern winter time. The cold tongue is most intensified at
this time with a broad northwestward extension of the cold water. The
strong contrast between the warm pool in the west and the cold tongue in

the east leads to the sharp horizontal SST gradient in the equator.
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The seasonal variations of the tropical SST are affected by several
physical processes over a wide range of space and time scales. Among
these processes, solar insolation, latent heat release, upwelling and
advection play the dominant role. Sensible heat exchange and long wave
radiation from the sea surface are also important but their effects are one
order smaller than that of the latent heat flux.

The net downward radiative flux is the main heat source for the
ocean. One may refer to the atlases by Esbensen and Kushnir (1981),
Oberhuber (1988) and Fu et al. (1990) for the distribution of the radiative
flux in the tropical Pacific. The seasonal variation of the SST away from
the equator is attributed to the changes of the solar heating. In the
northern hemisphere spring and summer times, the SST in the north
Pacific warms up as the solar heating increases. The warm pool (e.g. the
29°C isotherm) moves northward as the center of insolation maximum
shifts poleward. Meantime, the south Pacific cools because it is winter.

The existence of the equatorial SST minimum, however, cannot be
explained by either the solar heating or the latent heat flux. A cold sea
surface releases less heat to the atmosphere and the effect of the
anomalous latent heat flux is to diminish the cooling in the cold tongue
rather than to create it. In fact, the seasonal variability of equatorial SST
is related to the wind-driven upwelling and its effects on the thermocline
depth (Wyrtki, 1981; McPhaden, 1983; Halpern et al., 1989).

The equatorial upwelling is a coupled dynamic/thermodynamic
process. The easterly-wind driven Ekman divergence at the equator is

balanced by an upward mass flux from the thermocline and thus cold
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water is brought to the surface. The prevailing easterly trade winds over
the tropical Pacific cause the sea-surface to slope up towards the west.
This results in a deeper thermocline in the west than in the east and
produces the east-west variations in upwelling intensity. Because of the
shallower thermocline in the east, more rapid cooling is produced by the
turbulent mixing.

One can conclude that the variability of the SST in the tropical
Pacific is determined by both the surface heat flux and the advection
process. The implication is that the SST dataset contains useful
information about heat exchanges at the air-sea interface and therefore is

a valuable source to be used for studying the heat flux variations.



5. Results and Discussions

5.1 Estimates of the Surface Heat Flux by the Adjoint Procedure

In general, equations (3.22) through (3.24) constitute of the
variational adjoint procedure in searching an optimal surface heat flux
pattern over the tropical Pacific ocean. However, the experience we have
gained from a series of experiments shows that the process of obtaining
the optimal heat flux pattern is affected by a number of factors. Consistent
with the theory we presented in section 3.3, it is clear that the form of the
cost function indeed impacts upon the uniqueness of the solution and the
performance of the descent algorithm. We also discovered that the model
initial SST field has a substantial influence on determining the time-
dependent parameters. A meaningful optimal surface heat flux pattern

can be obtained only when the initial SST field is optimally determined.

5.1.1 The Form of the Cost Function on the Rate of the Convergence
In section 3.3 we have argued that the inclusion of the a priori

information, Jgq, in the cost function (3.20) has the effect of both

formulating a well-determined problem and increasing the probability for

having a unique solution. The practical usefulness of adding Jg is to
improve the conditioning of the Hessian matrix with the benefit of

speeding up the convergence of the descent algorithm.

70
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Several experiments are therefore conducted to test the effect of the

term Jq on the rate of the convergence of the minimization algorithm. We

denote the cost function
J1=JT+JQ

lJT ri\Zd .]_‘ 'J. - 2d

=22( -T) c+2KQz(Q-Q) c

and
Jo=Jp

_[(T -T¥ do
z

DN

in these experiments. The evolution of the cost functions and the norm of
their gradients during the iterative process is displayed in Figures 7a-b
and Figures 8a-b. The same first guess of the surface heat flux field,
which is set to be a constant field, is applied to the experiments in Figures
7a-b. A first guess with thermodynamic meaning is used in the
experiments of Figures 8a-b. Such a first guess is obtained by letting the
surface heat flux term be equal to the upwelling term in equation (3.22).

If a unique solution of a linear problem does exist, the optimal
solution obtained from the variational procedure will not depend on the
choices of the first guess of the control parameters. Hence the existence of
a unique solution can be examined by performing the variational

procedure with arbitrary choice of first guess.

The slower convergence rate associated with the cost function J,
(excluding of the term Jg) is clearly shown in Figures 7-8. The norm of the

gradient of J, (represented by |VJ,|) decreases slowly during the iterative
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process (Figures 7b and 8b) and so is the value of the cost function J,
(Figures 7a and 8a). While |V/J,|, the norm of the gradient of J,;, decreases
rapidly in the first couple of iterations. The functional value J; has also a
fast reduction at these two iterations. Therefore it is expected to see that
the procedure associated with the formulation of J, takes several more
iterations than that of J; to achieve a similar computational steady state of
the minimization process. In all experiments, the iterative process is
truncated once a steady state is approached (i.e., when the changes in the
values of the cost function and the norm of the gradient are no longer
significant) since further iterations do not improve the results.

Comparing with these experiments, one can find that the
minimization process associated with the cost function J; reaches the
steady state faster in the experiment of Figure 8 than in Figure 7. This is
due to the use of a more realistic first guess field, which uses a field with
some thermodynamic meaning, in the experiment of Figure 8. This first
guess gives a representation of what the field may be like at the beginning
of the assimilation and provides a good background field for the
parameter to be corrected from. So a well-chosen first guess field of the
control parameter can impact the descent algorithm by reducing the
number of iterations required for convergence.

Another interesting feature is that the optimal values of the cost

function J, in Figures 7-8 are different. This means the solution of the
problem associated with the cost function J, is not unique. The different
choice of the first guess of control parameter leads to a different cost

function minimum and a global minimum is not achieved in this case.
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Several experiments with different first guesses have been performed.

The results show that the optimal values of the cost function J, in Figures

7-8 are not sensitive to the choices of the first guess. It can be concluded
that the uniqueness of the problem with the cost function J; exists.
Examining the performance of the variational procedure in these
experiments, it is clear that the form of Jy does have the convexification
effect on the cost function and causes the solution to be unique. This in
turn improves the global convergence property of the descent algorithm

and speeds up the rate of convergence.
VJ]
Vol

The convergence criterion of the algorithm, i.e., < 1072, where

[VJ,ol is the value of [VJ| at the first iteration, is not satisfied in these

experiments. This problem is related to the topic in the next section.

5.1.2 Determining the Initial Condition and Its Effect on the Parameter

Estimation

This study is concerned with the optimal parameter estimation.
The unknown model field parameters, i.e., the surface heat flux
distribution, are determined by minimizing the cost function which
measures the distance between the modeled SST and the observed SST. In
the variational adjoint procedure, the SST model (3.22) is integrated
forward in time from an initial SST state; the adjoint model (3.23) is
integrated backward in time using the periodic initial condition for the
Lagrange multiplier. The initial condition for the adjoint model is no

longer zero but periodic since we assimilate the climatological data.
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The initial condition of the dynamic model has significant influence
on determining the model unknown parameters in using the adjoint
method. In the study by Yu and O'Brien (1992), they found that the data
misfit can be significantly reduced if the initial current state is optimally
determined in addition to the parameter estimation (wind stress drag
coefficient and the oceanic eddy viscosity profile in their case). Similar
results were obtained by Zou et al. (1992) for determining optimal nudging
parameters using the variational adjoint method. In fact, by adding the
initial condition to the set of the adjustable parameters, the data are
equally weighted at all time steps in obtaining the optimal model solution.
Since the recovery of the initial SST field at zero time is influenced by the
data of the whole assimilation period, data noise will tend to average out
and a better model-data fitting will result.

If we study time-independent parameter estimation, such as the
wind stress drag coefficient and the oceanic eddy viscosity profile in Yu
and O'Brien (1991), the optimally determined initial condition improves
the accuracy of the estimated parameters. In this case, the values of the
estimated parameters represent the time-averaged values corresponding
to the assimilating period. These values will not be significantly distorted
if the initial model state is not included in the optimization. However, for
time-dependent parameter estimation, such as the problem in this study,
the errors in the chosen initial model state may contaminate the
estimated parameter field in such a way that the information contained in
the parameter field is gradually degraded in time.

It is known that the adjoint procedure extracts only the information
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from the observations which is dynamically consistent with the physical
model which is assumed to be perfect. The initial condition contains part
of the model's dynamic information because it represents the ocean's
memory of its previously existing dynamic processes. If we take the initial
model state for granted (either using the observational data or taking the
fully spun-up model climatological state) in the model forward
integration, the level of the accuracy of the parameter estimation depends
on the distance of the chosen initial condition from the "true" model
initial state (the "true" model initial state represents a dalanced initial
state with respect to the model's own dynamics). The initial inconsistency
contributes to the model errors and therefore is filtered out by the adjoint
assimilation. The accuracy of the estimated parameters is therefore
affected since a certain level of useful information is neglected and the
parameters are under-estimated. In the case of estimating the time-
dependent parameters, the initial inconsistency propagates in time and
influences the model evolution. Its effect on the estimated parameter is
that the parameter field information is slowly degenerated in time, which
is clearly shown in Figure 9.

Figure 9 shows the result of the estimated surface heat flux pattern
without the optimization of the model initial condition. The SST model
integration uses the observed SST field as an initial condition. The surface
heat flux pattern obtained has seasonal variations for the first 9 months.
However, the information is gradually lost and is much evident starting
from October. By the time of December, the heat flux pattern has only a

very few contours in the whole basin. The adjoint procedure fails in
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Figure 9. The loss of information in the estimated parameter field from
September to December due to the errors in the chosen initial SST state.
The SST model integration uses the observation SST field as an initial
condition. The periodicity of the SST evolution is not satisfied at the end of

the assimilation cycle.
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recovering the seasonal cycle for the last 3 months due to the missing
information.

This can be explained by examining the behavior of the SST and the
adjoint model. The chosen initial condition is not consistent with the
model's intrinsic dynamics due to either the observation error or the
discrepancy between the model and the real world. The propagation of the
model error at the initial time causes the model to deviate from the
observations at a later time. Hence the periodicity of the SST evolution,
which is the natural required condition for assimilating the
climatological data, is not satisfied at the end of the assimilation period.
The adjoint model, though, uses a periodic initial condition for the
Lagrange multiplier and is driven by the square root of the SST data
misfit. The noise-contaminated SST field at the end of the assimilation
cycle affects the computations of the adjoint model at its initial time and
then influences the heat flux fields, whose values are closely related to the
values of the Lagrange multiplier (equation 3.24). In fact, the degree of the
discontinuity in the surface heat flux pattern in December and January
reflects the noisy level of the chosen SST initial condition.

The failure in the recovery of the time-dependent parameters
actually reflects the characteristics of the partial differential equation.
The SST equation (3.22) is a linear equation with non-constant coefficients.
The heat flux plays a role of external forcing. The solution of the partial
differential equation is determined by the initial condition, the boundary
condition and the forcing. Regardless of the boundary condition which is

proved to have negligible effect on the solution in this study, the behavior
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of the SST evolution of equation (3.22) is governed by the initial SST state
and the heat flux forcing field. Therefore in addition to an optimal heat
flux field, a model-balanced initial condition is an important factor in

determining the solution of equation (3.22).
Using the same strategy proposed by Yu and O'Brien (1992), we
seek the optimal solution by estimating both the SST initial state and the

heat flux field parameters. A new term, which is

=3 [T To? axdy 5.1)
Xy

is added to the cost function (3.20). The cost function now has the form:
1 ™2 1. 2
1wary=% [@-tras+ ik, [@-ard
> b

+3K, | (T,-Ty? dxdy (52)
Xy

where T, denotes the initial SST, '1‘0 the values of the initial SST at the
previous iteration and K, the computational weight.
The gradient of the cost function with respect to the initial condition

of the SST is given by:
Vo = Ky(To - To) -

oAy d(udy) dA(vAy) 0% 0%Ap
{ 3 * SA( axT 5 )+ 5vx¥+ SW-F— SaAr M(w,) o

(6.3)

The equations (3.22), (3.23) and (3.25) remain the same. The variational
adjoint procedure updates the SST initial condition and the flux field
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parameters at every iteration.

Actually, it is not more costly to control the initial condition in
addition to the model parameters because the correction of the initial state
uses the same information from the adjoint model. The SST model
integration begins from a balanced initial condition and thus eliminates
the initial noise in biasing the model evolution. Figure 10 shows the
evolution of surface heat flux from September to December by using (5.3) to
correct the initial SST in the minimization process. It can be seen that the
changes in these maps are continuous.

Another problem arises when adding the initial condition for
adjustable parameters, i.e., the number of the observations is less than
the model degrees of freedom. This means that we need to explore a good
first guess state for all the control parameters (heat flux field and the
initial SST). This is not just to reduce the number of iterations required for
convergence but to give a meaningful background for the estimated
parameters, i.e. to bias the solution towards the inputted a priori
information. This technique is commonly used in determining a
meaningful optimal solution for an under-determined problem in
meteorology/oceanography data assimilation (e.g., Sheinbaum and
Anderson, 1990).

The computational results shown in the following sections are from
the variational procedure using the cost function (5.2) and including the

adjustment of the initial condition (5.3).
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Figure 10. The evolution of the surface heat flux is continuous from
September to December by adjusting the initial SST field in addition to the
estimated parameters. The periodic condition is retained.
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5.1.3 The Heat Flux Pattern Estimated from the Adjoint Procedure

The control field parameters Q in the equation (3.22) are computed
by the variational procedure through minimizing the cost function (5.2).
Figure 11 is a plot of the evolution of the normalized cost function and the
norm of its gradient during the minimization. The norm of the gradient
displays a fast reduction during the first six iterations. Correspondingly,
the cost function drops to about 98% of its initial value during these six
iterations. One can observe that the norm of the gradient does not exhibits
any significant decrease during the further iterations. The cost function
could not be improved any further. We concluded that the computational
steady-state solution is achieved.

The resulting optimal net downward surface heat flux distribution
is shown in Figures 12a-d. The estimated surface heat flux pattern has a
strong seasonal cycle. During the northern winter time (Figure 12a), the
zero net heat flux line is located at about 8°N across the whole basin. Heat
loss appears to the north of the zero line, with the most significant heat
loss, over 100W/m2, in the northwestern part of the Pacific over the
Kuroshio region. The ocean gains heat to the south of the zero line. The
large net heat gain area is off the coast of Peru which is the area
associated with the cold tongue. As the spring comes (Figure 12b), the
pattern begins to change. The heat loss in the northern ocean decreases.
In the meantime, heat loss occurs in the southern ocean. The maximum

heat gain in the equatorial region expands and moves offshore to about

135°W.
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The net downward heat flux in the northern earlier summer
(Figure 12c¢) has the opposite pattern to that in the winter time. The
obvious change is the appearance of the positive heat flux in the broad
area of the northern hemisphere and the negative heat flux in the south
and along the coast of the South America. The strength of the heat gain in
the central equator decreases and the maximum heat gain occurs in the
northeast (off the coast of Mexico). In September when the northern fall
comes (Figure 12d), the area where the ocean gains heat is confined to the
equatorial zone (between 8°S to 8°N). The heat loss/gain is small outside of
the equator except in the Kuroshio region where the heat loss to the

atmosphere is more than 60W/m?2.

5.2 Results Analysis
5.2.1 Comparison with the Existing Heat Flux Atlases

We compare our estimated heat flux pattern with those existing
atlases in order to verify the results. However, we find ourselves in a
difficult situation when searching for a good atlas. Although many
versions of climatological fluxes are available, a considerable uncertainty
exists among these atlases due to the different heat flux
parameterizations adopted. Each of these climatologies qualitatively
agrees on the seasonal variations of the heat flux distribution over the
tropical Pacific, but differs (sometimes significantly) on the quantitative
values. There is no standard version in existance allowing us to make a

good judgment about our calculations. Hence the chosen two atlases
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(Oberhuber (1988) and Fu et al. (1990)) serve only to illustrate the general
features of the heat flux seasonality.

The data used to produce the heat flux maps of Oberhuber
(hereafter O88) (Figures 13a-d) and Fu et al. (hereafter FU90) (Figures
14a-d) are the same COADS (Comprehensive Ocean-Atmosphere DataSet)
described by Woodruff et al. (1987). The 30-year data for the period of 1950-
1979 are projected on to 2° x 2° grids in O88's atlas and to 4° x 4° grids in
the atlas of FU90. Even though the data source are exactly the same, the
net heat flux they computed are quite different in some places.
Nevertheless, they can be used as a reference for our comparison.

Comparing Figures 12-14, one can find that the main seasonal
features in all of the three heat flux maps, i.e., seasonal alternating of
heat loss/gain outside of the equatorial zone and seasonal changes in the
location and the strength of the heat flux maximum center in the eastern
Pacific along the equator. The obvious failure in our map is the
inadequacy in simulating the strength of the heat flux variations in the
northwestern Pacific over the Kuroshio region during the northern
winter time.

The major differences between these maps is in the actual values.
Sometimes they are very significant. In December, O88 (Figure 13a) gives
a stronger heat loss in the Northern Pacific than the map of FU90 (Figure
142) and much more stronger than our map (Figure 12a). Meanwhile, the
ocean gains more heat in the Southern Pacific in FU90 than the other two
maps. The great difference occurs in the Eastern Pacific to the north of

the equator (about 10°N) where one finds a very strong surface heating,
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Figure 13. The pattern of the net downward surface heat flux according to
Oberhuber (1988). (a) December; (b) March; (c) June; and (d) September (the
contour interval is 25 W/m?).
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Figure 14. The pattern of the net downward surface heat flux according to
Fu et al. (1990). (a) December; (b) March; (c) June; and (d) September (the
contour interval is 40 W/m?2).
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over 120 W/m?, in FU90; while the heating in the other two maps is
compatible, about 50 W/mz2.

As northern spring approaches, the surface heat loss is greatly
reduced. The heat budget is near zero over a broad area of the northern
Pacific in both FU90 (Figure 14b) and our map (Figure 12b). But the
surface heat loss is still visible in O88 (Figure 13b) and is most noticeable
in the northeastern Pacific where the value is over 75 W/m2. The intense
heating of 160 W/m? along the coast of Mexico and central America exists
only in FU90. The warm pool gains more heat in FU90 than O88 and our
map. The heating in the southern Pacific decreases and negative values
appear in O88 and our map. The largest difference between our pattern
and either 088 or FU90 is the strength and the location of the maximum
heat gain in the eastern Pacific. The heat surplus center, stretching
westward from the coast of south America, forms a belt along the equator
with the maximum value about 160 W/m2 in 088 and FU90. Compared
with their own patterns in December, the strength of the center increases
in O88 and, oppositely, it decreases in FU90. The equatorial maximum
heating center in our map moves offshore to about 135°W and its strength
has a slight decrease. Therefore, whether this equatorial belt should be
enhanced or reduced during spring time can not be judged by comparing
with these two chosen atlases.

Our heat flux pattern in the northern early summer (Figure 12c)
differs from those of 088 (Figure 13c) and FU90 (Figure 14c) at the location
of the maximum center of the equatorial belt. In our map, the maximum

center is located at 140°W and the value decreases to about 80° W/m2. Heat
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loss occurs along the coast of South America and its value significantly
increases compared with March. Although the heating in this area is
reduced from March to June to about 75 W/m?2 in 088 and 120 W/m? in
FU90, the center is located at 100°W in both maps. There indeed exists a
small heat loss area in the Eastern Pacific at the equator in FU90, but its
strength is only half of ours. The FU90 has a stronger heating in the
Western Pacific warm pool area than both O88 and ours. The common
features of all the maps are the increasing heating in the north but with
greater strength in O88 and FU90 than our map; the strong heat loss in
the southern ocean; and the intense heating in the northeast along the
cold California current.

The belt of our heat surplus in the equator is centered at 150°W in
September (Figure 12d). It slightly moves westward and spreads wider
along the equator. The heat loss off the coast of south America is greatly
reduced. The center in both 088 (Figure 13d) and FU90 (Figure 14d) has a
westward movement and increases its heating strength. Again the heat
gain in the warm pool in FU90 is much stronger than our map and 088.
All these maps show the reverse hegting pattern to that in the spring time
for the region outside of the equator.

To summarize, outside of the equatorial zone (8°S - 8°N), the
seasonal variations of the heat flux pattern from our calculation agrees
with those of 088 and FU90 but the strength is weaker. FU90 gives the
maximum strength throughout the climatology year. Our map fails in
simulating the strong seasonal variations of the heat flux over the

Kuroshio region in the northern winter time. In the equatorial zone, our
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center of the'maximum heat gain in the east Pacific, especially along the
coast of the south America, has a different evolution in location and
strength from O88 and FU90. The variation of heat flux in the Western
Pacific warm pool area is small all year around in both O88 and our map
but is very large in FU90.

The net heat flux is determined by the heat exchange process
between the sea surface and the lower atmosphere. In the next section we
present the air-sea interaciion mechanisms controlling the distribution of
the heat fluxes. We then study the thermodynamic relation between the
SST and the surface heat flux from the SST equation. The divergence of
our result from those .atlases (088 and FU90) which used the bulk

aerodynamic formulae is discussed.

5.2.2 The Physical Processes Determining the Heat Flux Distribution

Of all the components in the downward heat budget balance, the
solar radiation and latent heat flux are the major contributors for the
seasonal variations of the surface heat flux. The loss of heat by sensible
heat flux over the ocean surface is much less than the latent heat flux
(about one-tenth).

The seasonal cycle of the solar radiative flux is mainly defined by
the change in albedo and modified by seasonal variations of the cloud
cover (See the atlases by Esbensen and Kushnir (1981), Oberhuber (1988),
Fu et al. (1990)). The solar heating varies primarily with latitude which

decreases from the equator to the polar regions. The northern ocean
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receives maximum solar incoming radiation from spring to summer
while the southern ocean has minimum solar heating in this period.

The latent and sensible heat fluxes are controlled by the wind speed
and the vertical gradient of humidity or temperature at the ocean surface
(e.g. Cayan, 1990; Large and Pond, 1982). Outside of the equatorial region
(latitudes poleward of 8°), the latent and sensible fluxes are strongly
seasonal. For the northern hemisphere, they reach their maxima from
fall to winter because of the seasonal enhancement of the northeast trade
winds and the large thermal or vapor difference near the ocean surface.
The pattern reverses for the southern hemisphere. Within the equatorial
region, there is a low latent heat belt stretching along the equator from 6°S
to 2°N with the minimum located near the coast of Peru (e.g., Oberhuber
(1988), Fu et al. (1990)).

The resulting net surface heat flux has a corresponding variation
in the seasonal time scales. During the northern fall and winter time, the
latent and sensible heat loss to the atmosphere over the northern ocean
(the southern ocean) is much larger (less) than the net solar radiation
accumulated at the surface, and therefore, the ocean releases (gains) heat
to (from) the atmosphere. During the rest of the year, the northern
(southern) ocean gains (loses) heat mainly due to the seasonal increasing
(decreasing) of the solar incoming flux. The existence of the maximum
net heat flux in the Eastern Pacific cold tongue region is the result of the
minimum latent heat loss in this area.

The comparisons in section 5.2.1 show that the variational adJ;oint

procedure has successfully simulated the main seasonal signals of the
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heat flux distribution from assimilating the SST observation. But the
strength of the seasonal variation is weaker and the evolution of the

equatorial heat gain belt is different from the atlases of 088 and FU90.

5.2.3 Examining the Results from the Thermodynamic Point of View

Our net surface heat flux pattern is derived from the SST
observations. The evolution of SST is governed by the ocean advection
process as well as the surface incoming heat flux. As is discussed in
section 4.2, the changes of SST in the extra-equatorial region is mainly
determined by the seasonal variations of the surface heat flux, in which
the solar radiation plays a dominant role, while the seasonal variability of
the equatorial SST is related to the coupled dynamic/thermodynamic
upwelling process occurring in the upper ocean.

The modeled SST field is displayed in Figures 15a-d. Outside of the
equatorial region, the modeled SST field well resembles the observational
SST field (Figures 6a-d). In the equatorial region, the seasonal variations
of the cold tongue in both model and observations follow the cycle: the cold
tongue is weakest in northern hemisphere spring and strongest in fall.
However, the shape of the modeled cold tongue is slightly different from
the observation. In what follows we attempt to explain why there is a
difference of our heat flux pattern from the other maps over the region of
the cold tongue.

The SST in the equatorial cold tongue is warmest in the northern

winter and spring. The warmer SST at this time is due to both the weaker
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cooling associated with the weaker upwelling (Figures 5a-b) and the
stronger surface heating (Figures 12a-b). The changes of our heat flux
pattern during this period is consistent with O88 and FU90.

A cold SST occurs in September along the coast of south America.
There are two mechanisms responsible for the appearance of this cooler
SST. One is the most intensive cooling by the strongest upwelling during
this period; and the other one is the strong surface cooling starting in the
earlier summer (Figure 12c¢). The existence of a strong heat loss area
along the coast of south America in the summer time is a unique feature
in our map. It does appear in FU90 (Figure 14c) but with much weaker
strength and O88 does not have this cooling at all.

In the southeast Pacific along the south American coast, the SST
decreases about 4 - 5°C during northern spring-summer. The upwelling
pattern shows that the coastal upwelling is much weaker than the
equatorial upwelling (Figures 5b-c). The SST decreases along the coast of
the south America and must be caused by some other cooling
mechanisms. The strong surface heat release is therefore the main
contributor for reducing the temperature so significantly and rapidly.

From the analysis of the air-sea interactions during this period, we
see that these large heat releases in this region are reasonable. Off the
coast of south America, northern summer is the time of the year when
the value of the cloud cover is maximum (relative to areas to the north and
west) and therefore the incoming solar heating is a minimum (e.g. FU90).
This is also the time when the southeast trade is strongest and thus the

latent heating release increases (e.g. FU90). Both mechanisms have the
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effect of reducing the heat received from the atmosphere. The appearance
of the negative heat flux can be explained as being due to the latent heat
release which overpowers the solar incoming.

Therefore it is mainly the surface cooling that causes the SST to

decrease along the coast of south America in the northern summer and

fall in our calculation.

5.2.4 Data Misfit

The cost function is minimized when the optimal heat flux pattern
is obtained. The pattern of the data misfit between the model SST and the
observed SST is shown in Figures 16a-d. The data misfits in the northern
summer and fall are larger than those in the winter and spring. The
largest discrepancies between the model and the observations are in the
regions associated with the cold tongue and the Kuroshio, where the
misfit of 0.75°C appears.

We suspect that the larger data misfits in the cold tongue and the
warm Kuroshio are partly attributable to the model's own shortcomings.
The model uses a constant surface layer in resolving the physics of the
near-surface region. However, the assumption that the surface layer is a
constant may not be practical in representing the intensity of the
upwelling.

By choosing the surface layer depth to be 50 meters, the
temperature of the entrained water (T;) is represented by the temperature

at 50-m depth (T;,) and parameterized in terms of the vertical
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displacements of the model thermocline, in the same way as Seager et al.
did (1988). By doing so, the intensity of the upwelling is strongly dependent
on the temperature at 50m. For a deep thermocline (e.g., the western
equatorial Pacific), the upwelled water from above the thermocline is
warm. For a shallow thermocline (e.g., the eastern equatorial Pacific),
the upwelled water from the thermocline region is cold.

In reality, choosing 50-m to simulate the surface layer may not be
appropriate in the eastern Pacific where one expects a shallower surface
layer to exist. Hence the model may give a stronger upwelling in this
region and the surface water might be cooler than it should be. This can
explain the existence of the large negative data misfit associated with the
equatorial upwelling region.

The model is formulated in such a way to simulate the major
features of the equatorial ocean. The parameterization of the entrainment
is too simple so that it may not be applied to the regions outside of the
equatorial zone. The larger data misfit in the northwestern Pacific - the
Kuroshio region - may be partly due to the lack of mid-latitude dynamics
in the model formulation; and/or due to the open boundary condition
associated with the western boundary current.

The large departure of the model SST from observed SST in the
regions of the equatorial cold tongue and the western boundary current
indicates that the model physics in these regions are inconsistent with the
data. The modeled SST tends to be cooler than the observed SST here.
However, the heat flux pattern obtained is best consistent with the model

dynamics as well as the observations.



6. Summary and Conclusions

A simple oceanic model with thermodynamics is used to determine
the surface thermal forcing field by the variational adjoint technique. Two
data-sets are chosen, the climatological monthly-mean sea surface
temperature (SST) and winds. We have been able for the first time to
calculate the seasonal surface heat flux patterns which are consistent
with the ocean's dynamics and thermodynamics and which agree with
the observations.

The results show that the model, albeit simple, is capable of
assimilating the sea surface temperature (SST) observations in deriving
the surface heat flux. The oceanic model used is essentially the same as
Seager et al. (1988). It adopts a constant-depth surface layer to simulate
the features near the surface region. As is common in a reduced-gravity
model, we assume that the surface pressure gradient varies with the
thermocline depth alone. Fortunately by assuming this, the model physics
are greatly simplified because the model dynamics and thermodynamics
become decoupled. This permits the integration of the dynamic model and
the variational parameter estimating to be performed separately.

The total number of the control parameters in this study is very
large because the estimated flux field is a function of time and space. We
perform the descent algorithm efficiently by applying the technique of

scaling to improve the conditioning of the Hessian (the second derivative

107
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matrix of the cost function). The scaling transforms the variables from
units that typically reflect the physical nature of the problem to units that
display certain desirable properties of the optimization. The basic rule of
variable scaling is to make all the variables in the scaled problem to be
order of unity so that each variable has a similar weight during the
optimization. By scaling the variables, the derivatives of the cost function
are also scaled implicitly. Experiments have shown that an initial well-
scaled functional leads to a significant improvement in the performance
of the descent algorithm.

In variational analysis, the solution of a problem is sought by
minimizing the cost function. The use of the e priori information is
investigated in the formulation of the cost function to obtain meaningful
model parameters. Experimental evidence has verified that adding a
priori information of the estimated parameters can increase the
probability for the solution to be unique. Also the a priori information
plays the role of bogus data. It serves not only to increase the number of
observations but to improve the conditioning of the Hessian matrix. Hence
the practical benefit of adding the a priori information is to precondition
and to accelerate the convergence of the descent algorithm.

We learned from many test runs that the surface heat flux pattern
can not be fully derived without the optimal adjustment of the model
initial SST state. The importance of a correct initial SST condition in our
study is to ensure a periodic seasonal cycle and therefore reduces the level

of the data misfit.
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The result illustrates that the model, albeit simple, is capable of
assimilating the sea surface temperature (SST) observations in deriving
the surface heat flux. The comparison with the existing heat flux atlases
of Oberhuber (1988) and Fu et al. (1990) has shown that our adjoint
procedure has successfully captured the seasonal signals of the surface
heat flux distribution over the tropical Pacific ocean. However, our heat
flux pattern gives a weaker strength in the variations all year round. The
model is also inadequate to simulate the strong variations in the
northwestern Pacific ocean over the Kuroshio region.

Examining the data misfits between the modeled SST and the
observed SST, one finds that a larger departure exists mainly in the
equatorial upwelling zone and the Kuroshio region. The modeled SST
tends to be cooled more than the observed SST. We conjecture that this
model-data misfit may be due to the model's own shortcomings. The
model is formulated to study the equatorial ocean dynamics; it lacks the
mid-latitude physics in resolving the features associated with the
Kuroshio. The inclusion of the constant surface layer may not well
represent the strength of the equatorial upwelling.

Nonetheless, the results from this research are very promising. It
provides a way for extracting the surface heat flux information directly
from the SST data. The optimal surface heat flux pattern estimated is
ensured to be consistent with the model physics and the observations. It
allows us to be able to explain the calculated model fields in terms of the
model physics and therefore to discover the weakness of the model

formulation by comparing with the data.
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The methodology used here can be easily extended to determine the
surface wind forcing field. It is possible to derive both the surface wind
and heat flux forcing by simultaneously assimilating the available wind
and SST dataset. As many applications have discovered, the adjoint
method is so versatile and powerful that it can adjust any model

parameter as long as there are sufficient observational data available.



Appendix A:
Derivation of the Continuous Adjoint Equation

From section 6 the cost function is defined as:
1 "2 1_ . -
z T

+3K, [ (T, Ty? axdy (A1)
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1

where the superscript T denotes the transpose, K, and KQ are the

computational weights.
The augmented Lagrangian is given by:
LA, T, Q, Ty) =J(T,Q,Ty) +

3T 3T T T o T
o] G+ 80 @ G 4 T+ 8 M) (T T) - 80 Q- B 55 8y 553
z

b

(A2)

The condition that L is a stationary point requires the first variation

of L vanish. We thereby obtain four Euler-Lagrange equations for A, T, Q,
and T,:
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111



aL(}"p T: Q: To)
T =0

aL()\-'ra T’ Q’ TO)
Q =0

aL(;\'p T, Q’ TO)
T, =

0

The condition (A3) gives:

oT 9°T

E-l-

s (0 G + V) + 8y M(we) (T - To) - 8 Q- 8ue 53 -

Suy

d

112

(A4)

(A5)

(A6)

T
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which is identical to the original SST model equation (3.14), where the

Heavyside function M(w,) is equal to its argument w, when w, is positive

and equal to zero otherwise.

The condition (A4) obtains the equation for the Lagrange multiplier

Ar, namely, the adjoint equation. The practical procedure involves the

partial integration of the model equation (A7) and is performed as follows:
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There are eight terms contributing to the variation of L with respect

to T. The first term gives:
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Q= J(T-'I‘) do (A8)
z

which is the square root of the data misfit. Performing the integration on

the second term yields:
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where the periodic condition for both T and A, are used.
The boundary condition u=0 at the eastern and western end of the

basin is applied in integrating the third term. One then obtains:

@=*§T£8A(xpug§)do

a(\u)
=ai'r faAEf—x(xTuT) do -JSA( gj(u T)dc (A10)
z z
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;_ J o(Apu)

9 5x do
z

Similarly, one finds

@-3 isA(xrv%T)do

o(Apv)
=8% fSA%(%vT) do - J&.\( (g;v T)dc (A11)
p> >
d
[,
>

where the condition v=0 at a solid northern and southern boundary has
been used in neglecting the extra term.

The fifth and sixth terms give:

z , b

® =0 (A13)
The intergration of the friction term can be written as:

0] =-%f8vx(7\,r%)dc

z
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=2 favxax(;\,r ax)d faw(%—%)do (A14)

z

2 > /. oT 3 (. N e
=

z pi
0% p
=- Jva(sx—z')dc
z

where it is known that there is no heat flux through the ocean sides,

OAr

therefore, g% =0 andg; = 0 at the eastern and western end of the basin.

The last term can be intergrated in the same way:

0= & [1. ()
z

- fsvy%(xr%rf,—)dc -Javy(—ay——a;)do (A15)
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oAy

where the cond1t1on ay =0 and == Y 0 at a solid northern and southern

boundary have been used.

Note that the derivation of the adjoint equation has been done for a
solid northern and southern boundary. When the variational analysis is
applied to a limited computational domain, the open boundary condition is
adopted in the SST model. It can be shown, by deriving the adjoint
equation in the finite difference form, that the open boundary condition for
the adjoint is identical to the SST model.

Summing up (A8) to (Al5), the condition that the first-order

variation of L with respect to T vanishes gives the adjoint equation:

OAr oAu) o(Av) Lr oAy
'at'aA{ ST+ ay} 8a {Ar M(w,)} - 8y z 8oz + (T T)=0
(A16)
The condition (A5) gives the equation
K, (@Q- Q-8 =0 (A17)

whose left hand side is the gradient of the cost function with respect to the
control field parameters Q, which is:
Vol =K, Q- Q)-8 Ay (A18)
Finally, we yield the equation from the condition (A6) which is:

K, (To- Ty) -
oAr o(Au) a(va) 02 2%

(A19)
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The left hand side is the gradient of the cost function with respect to the
initial SST field parameters, that is:

Vol = K, (To - To) -

Ohr dAu) oA v) 0%\, 0%,
{W-*-SA[ ox + ay :I-SA)‘TM(WG)+8VX_8;-2—+8VYF}{=O

(A20)



Appendix B:
Verification of the Correctness of the Gradient
Calculation

It is important to verify the correctness of the gradient calculation
before carrying out the minimization of the cost function. One way to

check if the correct gradient is found is described below. Let

J(T,u+cth) = J(T,u) + ch™VJ(T,u) + O(0?) (B1)

be a Taylor expansion of the cost function. The term u represents the
control parameters (the initial SST state and the heat flux field), a is a
small scalar and h is a vector of unit length (such as h = VJ [|VJ||"}).
Rewriting (B1) one can define a function of o by

J(T,u+oh) - J(T,u)

TV (Tu) 17O ®2)

o(a) =

If the values of the cost function and the gradient are correctly
calculated, the value of ¢(o) will linearly approach 1 with o decreasing
through a wide range of magnitudes. If we find that the value of ¢ is
linearly approaching a constant C ¥ 1, it indicates that there arz errors in
the gradient calculation. The error may occur in the data management in
the forward dynamical model (write out) and the adjoint model (read in),

which results in the added forcing being wrong. If there is no linearity in
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the variation of the value of ¢ with decreasing values of a, then the errors
are probably due to an incorrect calculation of the cost function.

The variation of the value of the function ¢(a) with decreasing
values of o is shown in Figure 17. It is clearly seen that, for values of o
between 107! and 1077 (which are not too close to the machine zero), a unit
value of ¢(a) is obtained. The correctness of the gradient calculation is

therefore verified. Table 2 gives values of the function ¢(c) as a function of

.
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Figure 17. Verification of the gradient calculation
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Table 2. Verification of the gradient of the cost function

o o(o)

10! 1.6748334449
10° 1.0675191363
107t 1.0067877039
102 1.0007144947
107 1.0000574353
107 0.9998380197
10°° 0.9972566599
106 0.9507921824
1077 0.5506814043
1078 -3.5794943702

10°° -19.0676535243




Appendix C:
Comparison with Residual Heat Flux

The SST equation used in our study can be viewed as a linear

equation with non-constant coefficients:

2T T
%%+ SA(ug—§+v%;I;—)+8AM(We)(T-Td)=8QQ+5\.xg;+ S‘y%

(C1
The adjoint method searches for an optimal heat flux distribution by
minimizing the cost function (Al) and adjusting the initial SST condition.
When the optimal solution is obtained, the corresponding SST state gives
the optimal representation of the observed SST field. From the data
assimilation point of view, such a solution is dynamically balanced and
observationally consistent.

One may argue by examining (C1) that the heat flux term can be
viewed as the residual of the equation if all the other terms can be
calculated. That is, one can use the observed SST values directly to
compute each term of the equation (Cl). The heat flux field is then
obtained as the residual of the sum of all the other terms. Therefore, one
has a much easier residual method to compute the heat flux pattern than
the sophisticated data assimilation technique. If we do this, what is the
difference between the residual heat flux and the optimal heat flux

pattern, and what does this difference mean? Do we really need to

122



123

compute the heat flux with recourse to the fancy adjoint technique?

Figure 18a is the heat flux pattern in December from the residual
calculation. Compared with the optimal heat flux pattern of Figure 18b, it
can be seen that these two patterns have similar large scale features: the
zero heat flux line is around 8°N across the whole basin; the ocean
receives heat to the south of the zero line and releases heat to the north of
the zero line; the maximum heat flux is centered in the eastern Pacific to
the west of the coast of south America. However, the heating in the
southern ocean in the residual calculation is stronger than in the optimal
solution, especially the strength of the maximum center. The big
difference between these two patterns is at the equator, where there are
three eddy-like heating centers in the central Pacific existing only in the
residual heat flux pattern.

The atlases of Oberhuber (1988) (Figure 12a) and Fu et al. (1990)
(Figure 13a) show that there are no such intensive heating centers at the
equator. Therefore, one may wonder what causes this false feature in the
heat flux pattern by the residual calculation.

The observed data can always be divided into three parts: those that
are consistent with the model dynamics, those that are inconsistent with

the model dynamics, and those that are due to the observation error. In

the case of our study, we can write the SST observation T, as
T,=Th+ T,
where T,, denotes the part of the data consistent with the model, and T,

the part due to the model error and the observation error.
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Figure 18. (a) Heat flux pattern from the residual calculation; (b) The
optimal heat flux obtained from the adjoint procedure.
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In the residual heat flux calculation, the value of T, is used to
compute the terms in quation (Al). The resulting heat flux, denoted as Q,,

can be expressed as

aT, aT 3T, az'ro 2T,

B2)
While in the variational adjoint procedure, the heat flux pattern is
determined optimally by minimizing the cost function (Al). The
minimization procedure behaves like a filter and assimilates only the part
of the SST data, T, which is compatible with the model dynamics. The
evolution of the SST field is governed by the estimated heat flux and the
optimally adjusted initial SST condition and satisfies the dynamical

relation:
oT,, oT,, oT 0T, 0°T,,
SQ at +8A(ua +Vay )+8AM(W)(T Td) 8“‘82 - vyayz Q
(C3)

where Q_, represents the dynamically consistent heat flux.

Subtracting (C3) from (C2) yields

oT, oT, 0T 82T 0T,
Qe:SQ at+8A(ua +Vay)+5AM(W)T "By o2 (C4)

where Q, = Q, - Q. Therefore the difference between the residual heat
flux and the optimal heat flux is represented by the quantity of Q,, which
is induced solely by T, (the model and observation errors).

The question is now whether the three intensive heating centers at

the equator in the residual heat flux pattern are attributable to the errors.
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Let's do an experiment. Figure 19 is the data misfit between the observed
SST and the modeled SST after the optimal heat flux pattern (shown in
Figure 18b) is obtained. The heat flux corresponding to this misfit is not
dynamically consistent with the model equation (C1) and is filtered out by
the adjoint procedure. We add this data-misfit induced heat flux to the
optimal solution of Figure 18b and display the resulting flux pattern in
Figure 20. Compared with Figure 18a, these two patterns are remarkably
similar. It is undoubtedly shown that it is the errors in the SST
observations that create the extra heating centers at the equator in the
residual heat flux calculation.

In general, the initial conditions, boundary conditions, and the
forcing determine the trajectory of the partial differential equation (C1). It
is shown in section 5.1.2 that the periodic seasonal cycle of the SST
evolution can be obtained only if the optimal heat flux as well as the
optimal initial condition are applied. It implies that the residual-
calculated heat flux pattern cannot give the periodic solution of the
equation (C1) due to the error. If such an error-contaminated heat flux is
used as the forcing and a model-unbanlanced observed SST state is chosen
as the initial condition for the equation (C1), the model integration of (C1)
will soon drive the SST field in an error-dominating state. This can be
illustrated as follows.

Combining the continuity equation (3.5) with (C4) yields

aT, o*T, _ 9°T,
5t =02 V(u-To) + 8g Q. - 3M(w,)T, + 8,w,T, - 5""87 - 5‘,},? (C5)

Equation (C5) is then integrated over the whole spatial domain. By

assuming that all the boundaries are solid, one can obtain
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Figure 19. The data misfit between the observed SST and the modeled SST.
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OPTIMAL HEAT FLUX PLUS DATA MISFIiT INDUCED HEAT FLUX (W/m?)
DECEMBER

Figure 20. The heat flux pattern of the sum of the optimal heat flux and the
data misfit induced heat flux. It is remarkably similar to Fig. 17a.
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T, { 8o Q. forw,>0 6
ot ~ [ 8, Q. - Bslw,IT, forw,<0 C6)

where the overbar (7) denotes the spatial averaged values.

It can be seen from (C6) that the error is proportional to the value of
the averaged heat flux in the upwelling area, and to the residual of the
heat flux and downwelling in the downwelling area. Sizeable upwelling
appears mainly in the equatorial region. It indicates that the equatorial
region is the most error-sensitive region due to the error property of C6.
We have seen in Figure 18 that the error is largest at the equator in the
residual heat flux pattern. If this error grows linearly, the SST evolution
will deviate far from the real state in a very short time.

We have illustrated here that the adjoint technique is a better
method to determine the surface heat flux pattern. The adjoint
determined heat flux pattern is consistent with both the model dynamics
and the observations. Though it is a much more expensive procedure
computationally than the simple residual calculation, the adjoint

approach gives the correct way for extracting the model unknowns from

the available observations.



Appendix D:
Why can't the Cost Function be zero When

Assimilating the Real Observed Data?

The cost function J in (A1) measures the lack-of-fit between the
observation and the model counterpart plus the misfits between the
estimated parameter fields and the chosen guess fields. The essence of the
assimilation procedure is to make the cost function as small as possible.
The cost has a smallest value of zero in the L, Euclidean norm. Therefore
the global minimum of the cost function should be zero.

Analytically the cost function is zero when the solution of equations
(A7), (A16), (A17) and (A19) is obtained. The question is: Can this be the
case in real data assimilation? Numerous experiments have shown that
the cost function cannot go to zero when assimilating real observations.
Why can't the cost function be zero in real data assimilation? The answer
to this problem will help in understanding why we can't recover the
results from the residual calculation.

We first summarize the minimization procedure before proceeding
with further discussion. At every iteration, the SST model (A7) is
integrated forward in time; the adjoint model (A16), which is driven by the
square-root of the misfits between the modeled SST and the observed SST,
is integrated backward in time; the gradient information of (A18) and

(A20) is then calculated and used in the minimization routine called
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CONMIN to search of a new estimate for the control variables (the heat
flux field and the initial SST state). CONMIN is a Beale-restarted,
memoryless, variable metric, conjugate-gradient algorithm. It has been
documented in Shanno (1978), Shanno and Phua (1980), Navon and Legler
(1987), and Legler et al. (1989).

It has been verified that the zero value of the cost functional can be
obtained when doing identical-twin data assimilation. In identical-twin
experiments, the observations are taken to be model simulated data. By
doing so, the "observations" are exactly consistent with the model
dynamics and are error-free (no observation errors and no model errors).
Heuristically, therefore, we conclude that the global minimum of the cost
function can be obtained when the observations and the model dynamics
are exactly compatible.

The only difference between the real data assimilation and the
identical-twin experiment is that the real observations have errors (either
due to observational error or due to the model inadequacy in representing
the real world). Clearly, the problem of why the cost function can't be zero
becomes the problem of which part of the minimization procedure is
affected by the errors when using the real data.

The key point of this problem is in the minimization algorithm. The
SST equation is forced by the surface heat flux, and the adjoint equation is
forced by the square-root of the misfit between the modeled SST and the
observed SST. The trajectories of the SST and the Lagrange multiplier will
go the way what the applied forcing field would like them to go. In other

words, these two equations can respond to any given forcing field.
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Therefore the use of the real data will not affect the behavior of either the
SST model or the adjoint model.

CONMIN is a conjugate-gradient (C-G) algorithm for use in large-
scale unconstrained minimization problem. It searches a better
approximation to the minimum of a cost function of N variables, u;, us, ...,
uy, with each iteration.

Within a given iteration an estimate is made of the best way to
change each component of the vector u, so as to produce the maximum
reduction of the cost function. In order to do this, the gradient of the cost
function with respect to the variables needs to be calculated first. This
gradient is then combined with information from the previous iterations
to produce a search direction. The search direction is an estimate of the
relative change in each component of the vector # to produce the
maximum reduction in the cost function. The magnitude of the changes
along the search direction is controlled by the step-size. The step-size in

CONMIN is estimated optimally by using Davidon's cubic interpolation

(Navon and Legler, 1987). The new vector u,,, (where k denotes the
iteration number) after an iteration is given by the previous vector , plus
an optimal step size times the search direction. The iterative process is
terminated when a chosen convergence criterion is satisfied.

CONMIN is the most efficient of the available C-G algorithms in
tests conducted by Navon and Legler (1987). There are two main features
in CONMIN which cause this routine to assimilate the large-scale model-

consistent phenomena only.
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The CONMIN algorithm uses a single step-size to control the
magnitude of all the changes along the search direction at each iteration.
More specifically, the step size used provides only a general information
on how much the reduction should be made in the cost function in the
whole variable domain; it does not put special weight on any particular
search direction.

For identical-twin experiments, the observations are exactly
consistent with the model physics. The information of misfits is
distributed uniformly over the whole spatial domain. Therefore, the use of
one step-size can provide a uniform change in all the search directions.
The cost function is minimized in a way that the data misfits at all grid-
points tend to go to zero simultaneously. The zero cost function can be
obtained in this case.

For the real data assimilation, the data misfits are not uniformly
distributed due to random errors. Since the estimation of the step-size is
based on general information of the variable domain, the obtained step-
size therefore reflects only the large-scale, model-consistent feature of the
observational field.

The second feature is that the convergence criterion of the
CONMIN algorithm is based on the information of the whole variable
domain. If the norm of the gradient of the cost function is smaller than
some prescribed convergence parameter &, the convergence is then
achieved. That is to say, the algorithm pays little attention to the localized
large data misfits. As long as the misfits for the whole field are generally



134

small, the minimization process is completed. Hence the convergence
criterion represents an averaged property of the whole field.

Examining the results from the residual calculation and from the
minimization procedure (Figures 17(a-b)), one notices that the pattern of
the residual heat flux is much noisier than that of the optimal calculated
field. What are not recovered in the optimal calculation are those localized
small phenomena, such as the three eye-like intensive heating center at
the equator and the strength of the maximum center near the coast of
South America. It is clearly shown in Figure 20 that these localized
intensive heating are caused by the errors in the SST observations.

Therefore the CONMIN algorithm behaves as a "filter" when
assimilating the real data. The properties possessed by the CONMIN
algorithm determine that the minimization procedure selects the model-
consistent part of the information only; and the algorithm converges
when the total averaged misfit is small regardless of some localized large
data misfits. Because of this reasoning, the cost function will never be
zero as long as the model physics and the observations are not exactly
compatible.

The CONMIN algorithm then converges to a local minimum
instead of the global minimum which will give a zero cost functional. We
have shown that the cost function can't be zero due to the errors in the
real data. We also know that the CONMIN algorithm has only a local
convergence property (None of the C-G algorithm have a global
convergence property). The issue of the uniqueness of the local minimum

is beyond the scope of this research.



Appendix E:
The Effect of Choice of the Guess Field Q on the
Estimated Net Heat Flux Field

We have included a priori information about the estimated field

parameters in the formulation of the cost function J in (A1), which takes

the form:
JT,QTy) = Jg +Jg +J10
=% l(fr-i*)? dc+-é-K,; :‘:[(Q-~Q)2 dcs+-1éK; J'(T(,.'I‘o)2 dxdy
Xy
E1)

The usefulness of adding the term Jg has been discussed extensively in
section 3.3 and section 5.1,

By our definition, this added e priori informatiion measures the
closeness of the estimated parameters Q between two consecutive
iterations of the minimization procedure. It implies that the solution of Q
should be searched in the neighborhood of Q Therefore the term Q is
updated at every iteration. Mathematically, the form of this a priori
information plays the role of a penalizing term in which Q corresponds to
shifts of the origin. A similar procedure has been adopted by Carrera and
Neuman (19862 and b) in estimating aquifier parameters in hydrology.

The a priori information is extra information which is not
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contained in the model equation. It serves to reduce the range of possible
solutions, or even cause the problem to be unique. But the question is: How
certain is this information? Choosing the term Q to be the value of Q at the
previous iteration is based on the character of the smoothness of the
solution. Whether the obtained flux field is unique remains to be verified.
It would be helpful to answer the question if we can perform the
parameter estimation procedure using different choices for the term Q In
this appendix, we present the results from two experiments. In the first
experiment, we perform the minimization procedure for the first couple of
iterations by setting Q to be the value of Q at the previous iteration (as done

before). The value of Q after these first two iterations is then held and

denoted by Qz. For the following iterations of the procedure, we calculate
the differences between the newly estimated Q and the value of éz. The
reason for choosing the value of Qz is because, from our experience, the
estimated flux field can be improved significantly from its first guess
usually after two or three iterations.

The second experiment uses the Oberhuber's climatological net-
heat-flux data as Q Thus the differences between the estimated flux field
and Oberhuber's flux field are minimized in addition to minimizing the
misfits between the modeled SST and the observed SST.

Figures 21(a-d) and 22(a-d) show the estimated flux field from
experiments 1 and 2. It is surprising to see that the estimated heat flux
fields in these two maps are so remarkably resemble. Comparing with the
flux pattern shown in Figures 12(a-d) (which uses updated values for Q),

one also finds that all the estimated heat flux fields have similar spatial
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structures in all four seasons though the intensity of the flux fields from
experiments 1 and 2 are weaker. The optimal SST fields from these two
experiments are given in Figures 23(a-d) and 24(a-d). They look very
similar to each other. Compared with the observed SST field (Figures 6(a-
d)), it is clear that experiments 1 and 2 have successfully captured the
main features of the SST seasonal variations.

One may wonder why the estimated heat flux fields (Figures
12,21,22) all give a similar structure of the seasonal variations of the heat
flux, regardless of choices of the value of Q One may also ask why the
heat flux fields from experiments 1 and 2 are weaker.

Examining the cost function J in (E1), one notices that there are

three terms, i.e., Jq, Jq and Jyo in the formulation of J. The terms Jq and Jro
are added for the purpose of parameter estimation. It is the term Jy that
contains the physical information from the SST equation which is the

constraint in our minimization problem. Correspondingly, it is the

square-root of Jp that drives the adjoint equation. Therefore, the major
contribution to the minimization process is from the term Jp. This
explains why the structures from all the experiments (Figures 12, 21, 22)

look similar.

The weaker heat flux fields obtained from experiments 1 and 2 are
as expected. The term Jq functions as a penalty term. It penalizes the
departure of the estimated flux field Q from the guess field Q However,
the optimally determined heat flux structure is very different from the

structure of either Oberhuber's flux field or the flux field Qz. The

minimization procedure therefore tends to give a weaker Q in order to
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maintain less inconsistency between the simulated SST and the observed
SST.

Figures 25(a-d) and 26(a-d) show the corresponding SST data misfit
associated with experiments 1 and 2. It can be seen that the magnitude of
the misfits is larger than that in Figures 16(a-d). The minimization
process achieves the computational steady state within 4-8 iterations for

both experiments (Figures 27(a-b)).



139

1

NET DOWNWARD HEAT FLUX (W/m?) DECEMBER

]

- -30- -30- =30 —-40- .

- ———y
A Sy ]
e Q_/-zo

s}

s -60
——
40 \
20 e — TN 20/ \
¥ T T T T T ‘
180 160W 140W 120W 100w 60w

NET DOWNWARD HEAT FLUX (W/m?) ARCH

1 L T
y v
//”

0o ¢

h\zo

. 4 i . ¥ T
180 160W 140W 12CVW 100W 80w

Figure 21. The pattern of the estimated net downward surface heat flux
from experiment 1 in (a) December; (b) March; (c) June; and (d) September

(the contour interval is 20 W/m?2).
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Figure 21 continued
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Figure 22. The pattern of the estimated net downward surface heat flux
from experiment 2 in (a) December; (b) March; (c) June; and (d) September

(the contour interval is 20 W/m?2).
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Figure 23. The pattern of the modeled sea surface temperature from
experiment 1 in (a) December; (b) March; (¢) June; and (d) September.



144

MODELED SEA SURFACE TEMPERATURE (°C) JUKE

1 s Y
2\____—___/

T . .
160W 150W 120W

MODELED SEA SURFACE TEMPERATURE (°C)  <ppremser

L L L} .- _17//'/’J - ~
e @7 %
28 27 26 25 2u_ Ve _— 9 / A
20N : \ W 2 A S
"?t. — _.97—27/( g % Jl
X 22 28— é‘\a\‘,{/:;,;-
- - N /’,"l:.
B2 T
P =
2oj AT ]’
T T J

v v 1]
160w 140W 120 100w 80w

Figure 23 continued



145

MODELED SEA SURFACE TEMPERATURE (°C)  prepumer
. 1 1 1 ‘ ’ N % %//;/A %’-;\ L
\_’/v 2% Z . i
Sy
25 23 //2’%////2-
%

e
2 27 ) e '324:_,/,/,-
/ R
J d
_// 21/ //19 j-

1 + T 1
140W 120W 100W 80W

MODELED SEA SURFACE TEMPERATURE (°C) e

rFoo <
g —_ 2 ] >
e S —— A
20N-] ///———-;\27(\25 }\4&_/_’_// (.;{,/y,//j Y
9 /-____ \_/ A
?‘«' \\ \ / - 2
T —— g =~
' ">

108+

T

= . &
\ T
23 i 7 e
— ) ) I
: 3
/ )/
25 23 =22 ,ﬁ-

13 ] ] i +
160W 140W 120w 100w gow

205-7

Figure 24. The pattern of the modeled sea surface temperature from

experiment 2 in (a) December; (b) March; (¢) June; and (d) September.
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